Kolors-FaceID / basicsr /data /vimeo90k_dataset.py
lixiang46
fix basicsr bug
a64b7d4
raw
history blame
6.95 kB
import random
import torch
from pathlib import Path
from torch.utils import data as data
from basicsr.data.transforms import augment, paired_random_crop
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class Vimeo90KDataset(data.Dataset):
"""Vimeo90K dataset for training.
The keys are generated from a meta info txt file.
basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt
Each line contains the following items, separated by a white space.
1. clip name;
2. frame number;
3. image shape
Examples:
::
00001/0001 7 (256,448,3)
00001/0002 7 (256,448,3)
- Key examples: "00001/0001"
- GT (gt): Ground-Truth;
- LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
The neighboring frame list for different num_frame:
::
num_frame | frame list
1 | 4
3 | 3,4,5
5 | 2,3,4,5,6
7 | 1,2,3,4,5,6,7
Args:
opt (dict): Config for train dataset. It contains the following keys:
dataroot_gt (str): Data root path for gt.
dataroot_lq (str): Data root path for lq.
meta_info_file (str): Path for meta information file.
io_backend (dict): IO backend type and other kwarg.
num_frame (int): Window size for input frames.
gt_size (int): Cropped patched size for gt patches.
random_reverse (bool): Random reverse input frames.
use_hflip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
scale (bool): Scale, which will be added automatically.
"""
def __init__(self, opt):
super(Vimeo90KDataset, self).__init__()
self.opt = opt
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])
with open(opt['meta_info_file'], 'r') as fin:
self.keys = [line.split(' ')[0] for line in fin]
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.is_lmdb = False
if self.io_backend_opt['type'] == 'lmdb':
self.is_lmdb = True
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
self.io_backend_opt['client_keys'] = ['lq', 'gt']
# indices of input images
self.neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])]
# temporal augmentation configs
self.random_reverse = opt['random_reverse']
logger = get_root_logger()
logger.info(f'Random reverse is {self.random_reverse}.')
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# random reverse
if self.random_reverse and random.random() < 0.5:
self.neighbor_list.reverse()
scale = self.opt['scale']
gt_size = self.opt['gt_size']
key = self.keys[index]
clip, seq = key.split('/') # key example: 00001/0001
# get the GT frame (im4.png)
if self.is_lmdb:
img_gt_path = f'{key}/im4'
else:
img_gt_path = self.gt_root / clip / seq / 'im4.png'
img_bytes = self.file_client.get(img_gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
# get the neighboring LQ frames
img_lqs = []
for neighbor in self.neighbor_list:
if self.is_lmdb:
img_lq_path = f'{clip}/{seq}/im{neighbor}'
else:
img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
img_bytes = self.file_client.get(img_lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
img_lqs.append(img_lq)
# randomly crop
img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path)
# augmentation - flip, rotate
img_lqs.append(img_gt)
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
img_results = img2tensor(img_results)
img_lqs = torch.stack(img_results[0:-1], dim=0)
img_gt = img_results[-1]
# img_lqs: (t, c, h, w)
# img_gt: (c, h, w)
# key: str
return {'lq': img_lqs, 'gt': img_gt, 'key': key}
def __len__(self):
return len(self.keys)
@DATASET_REGISTRY.register()
class Vimeo90KRecurrentDataset(Vimeo90KDataset):
def __init__(self, opt):
super(Vimeo90KRecurrentDataset, self).__init__(opt)
self.flip_sequence = opt['flip_sequence']
self.neighbor_list = [1, 2, 3, 4, 5, 6, 7]
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# random reverse
if self.random_reverse and random.random() < 0.5:
self.neighbor_list.reverse()
scale = self.opt['scale']
gt_size = self.opt['gt_size']
key = self.keys[index]
clip, seq = key.split('/') # key example: 00001/0001
# get the neighboring LQ and GT frames
img_lqs = []
img_gts = []
for neighbor in self.neighbor_list:
if self.is_lmdb:
img_lq_path = f'{clip}/{seq}/im{neighbor}'
img_gt_path = f'{clip}/{seq}/im{neighbor}'
else:
img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
img_gt_path = self.gt_root / clip / seq / f'im{neighbor}.png'
# LQ
img_bytes = self.file_client.get(img_lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
# GT
img_bytes = self.file_client.get(img_gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
img_lqs.append(img_lq)
img_gts.append(img_gt)
# randomly crop
img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path)
# augmentation - flip, rotate
img_lqs.extend(img_gts)
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
img_results = img2tensor(img_results)
img_lqs = torch.stack(img_results[:7], dim=0)
img_gts = torch.stack(img_results[7:], dim=0)
if self.flip_sequence: # flip the sequence: 7 frames to 14 frames
img_lqs = torch.cat([img_lqs, img_lqs.flip(0)], dim=0)
img_gts = torch.cat([img_gts, img_gts.flip(0)], dim=0)
# img_lqs: (t, c, h, w)
# img_gt: (c, h, w)
# key: str
return {'lq': img_lqs, 'gt': img_gts, 'key': key}
def __len__(self):
return len(self.keys)