Spaces:
Runtime error
Runtime error
import spaces | |
import random | |
import torch | |
from huggingface_hub import snapshot_download | |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor | |
from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256 | |
from kolors.models.modeling_chatglm import ChatGLMModel | |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
from kolors.models import unet_2d_condition | |
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel | |
import gradio as gr | |
import numpy as np | |
device = "cuda" | |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") | |
ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus") | |
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) | |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') | |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) | |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") | |
unet_t2i = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) | |
unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder',ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device) | |
ip_img_size = 336 | |
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size) | |
pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet_t2i, | |
scheduler=scheduler, | |
force_zeros_for_empty_prompt=False | |
).to(device) | |
pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet_i2i, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=clip_image_processor, | |
force_zeros_for_empty_prompt=False | |
).to(device) | |
if hasattr(pipe_i2i.unet, 'encoder_hid_proj'): | |
pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj | |
pipe_i2i.load_ip_adapter(f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"]) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(prompt, | |
ip_adapter_image = None, | |
ip_adapter_scale = 0.5, | |
negative_prompt = "", | |
seed = 0, | |
randomize_seed = True, | |
width = 1024, | |
height = 1024, | |
guidance_scale = 5.0, | |
num_inference_steps = 25 | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
if ip_adapter_image is None: | |
pipe_t2i.to(device) | |
image = pipe_t2i( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
width = width, | |
height = height, | |
generator = generator | |
).images[0] | |
return image | |
else: | |
pipe_i2i.to(device) | |
image_encoder.to(device) | |
pipe_i2i.image_encoder = image_encoder | |
pipe_i2i.set_ip_adapter_scale([ip_adapter_scale]) | |
image = pipe_i2i( | |
prompt=prompt , | |
ip_adapter_image=[ip_adapter_image], | |
negative_prompt=negative_prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
generator=generator | |
).images[0] | |
return image | |
examples = [ | |
["一张瓢虫的照片,微距,变焦,高质量,电影,拿着一个牌子,写着“可图”", None, None], | |
["3D anime style, hyperrealistic oil painting, dolphin leaping out of the water", None, None], | |
["穿着黑色T恤衫,上面中文绿色大字写着“可图”", "image/test_ip.jpg", 0.5], | |
["A cute dog is running", "image/test_ip2.png", 0.5] | |
] | |
css=""" | |
#col-left { | |
margin: 0 auto; | |
max-width: 500px; | |
} | |
#col-right { | |
margin: 0 auto; | |
max-width: 750px; | |
} | |
""" | |
def load_description(fp): | |
with open(fp, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return content | |
with gr.Blocks(css=css) as Kolors: | |
gr.HTML(load_description("assets/title.md")) | |
with gr.Row(): | |
with gr.Column(elem_id="col-left"): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
show_label=False, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
with gr.Row(): | |
ip_adapter_image = gr.Image(label="Image Prompt (optional)", type="pil") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=10, | |
maximum=50, | |
step=1, | |
value=25, | |
) | |
with gr.Row(): | |
ip_adapter_scale = gr.Slider( | |
label="Image influence scale", | |
info="Use 1 for creating variations", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
value=0.5, | |
) | |
with gr.Column(elem_id="col-right"): | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Row(): | |
gr.Examples( | |
fn = infer, | |
examples = examples, | |
inputs = [prompt, ip_adapter_image, ip_adapter_scale], | |
outputs = [result] | |
) | |
run_button.click( | |
fn = infer, | |
inputs = [prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result] | |
) | |
Kolors.queue().launch(debug=True) | |