ProgU commited on
Commit
87700ed
·
1 Parent(s): 1ae558f

update metric and plot

Browse files
.env ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # .env
2
+ PASSWORD=88888888
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ .gitignore
2
+ .env
3
+ test.py
.idea/.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Default ignored files
2
+ /shelf/
3
+ /workspace.xml
.idea/LLM-Open-Generation-Bias.iml ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <module type="PYTHON_MODULE" version="4">
3
+ <component name="NewModuleRootManager">
4
+ <content url="file://$MODULE_DIR$">
5
+ <excludeFolder url="file://$MODULE_DIR$/venv" />
6
+ </content>
7
+ <orderEntry type="inheritedJdk" />
8
+ <orderEntry type="sourceFolder" forTests="false" />
9
+ </component>
10
+ </module>
.idea/inspectionProfiles/profiles_settings.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <settings>
3
+ <option name="USE_PROJECT_PROFILE" value="false" />
4
+ <version value="1.0" />
5
+ </settings>
6
+ </component>
.idea/misc.xml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 (LLM-Open-Generation-Bias)" project-jdk-type="Python SDK" />
4
+ </project>
.idea/modules.xml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectModuleManager">
4
+ <modules>
5
+ <module fileurl="file://$PROJECT_DIR$/.idea/LLM-Open-Generation-Bias.iml" filepath="$PROJECT_DIR$/.idea/LLM-Open-Generation-Bias.iml" />
6
+ </modules>
7
+ </component>
8
+ </project>
.idea/vcs.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="VcsDirectoryMappings">
4
+ <mapping directory="$PROJECT_DIR$" vcs="Git" />
5
+ </component>
6
+ </project>
pages/2_new_Demo_1.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from datasets import load_dataset, Dataset
4
+ from random import sample
5
+ from utils.metric import Regard
6
+ from utils.model import gpt2
7
+ import matplotlib.pyplot as plt
8
+ import os
9
+
10
+ # Set up the Streamlit interface
11
+ st.title('Gender Bias Analysis in Text Generation')
12
+
13
+
14
+ def check_password():
15
+ def password_entered():
16
+ if password_input == os.getenv('PASSWORD'):
17
+ # if password_input == " ":
18
+ st.session_state['password_correct'] = True
19
+ else:
20
+ st.error("Incorrect Password, please try again.")
21
+
22
+ password_input = st.text_input("Enter Password:", type="password")
23
+ submit_button = st.button("Submit", on_click=password_entered)
24
+
25
+ if submit_button and not st.session_state.get('password_correct', False):
26
+ st.error("Please enter a valid password to access the demo.")
27
+
28
+
29
+ if not st.session_state.get('password_correct', False):
30
+ check_password()
31
+ else:
32
+ st.sidebar.success("Password Verified. Proceed with the demo.")
33
+
34
+ if 'data_size' not in st.session_state:
35
+ st.session_state['data_size'] = 10
36
+ if 'bold' not in st.session_state:
37
+ bold = pd.DataFrame({})
38
+ bold_raw = pd.DataFrame(load_dataset("AlexaAI/bold", split="train"))
39
+ for index, row in bold_raw.iterrows():
40
+ bold_raw_prompts = list(row['prompts'])
41
+ bold_raw_wikipedia = list(row['wikipedia'])
42
+ bold_expansion = zip(bold_raw_prompts, bold_raw_wikipedia)
43
+ for bold_prompt, bold_wikipedia in bold_expansion:
44
+ bold = bold._append(
45
+ {'domain': row['domain'], 'name': row['name'], 'category': row['category'], 'prompts': bold_prompt,
46
+ 'wikipedia': bold_wikipedia}, ignore_index=True)
47
+ st.session_state['bold'] = Dataset.from_pandas(bold)
48
+ if 'female_bold' not in st.session_state:
49
+ st.session_state['female_bold'] = []
50
+ if 'male_bold' not in st.session_state:
51
+ st.session_state['male_bold'] = []
52
+
53
+ st.subheader('Step 1: Set Data Size')
54
+ data_size = st.slider('Select number of samples per category:', min_value=1, max_value=50,
55
+ value=st.session_state['data_size'])
56
+ st.session_state['data_size'] = data_size
57
+
58
+ if st.button('Show Data'):
59
+ st.session_state['female_bold'] = sample(
60
+ [p for p in st.session_state['bold'] if p['category'] == 'American_actresses'], data_size)
61
+ st.session_state['male_bold'] = sample(
62
+ [p for p in st.session_state['bold'] if p['category'] == 'American_actors'], data_size)
63
+
64
+ st.write(f'Sampled {data_size} female and male American actors.')
65
+ st.write('**Female Samples:**', pd.DataFrame(st.session_state['female_bold']))
66
+ st.write('**Male Samples:**', pd.DataFrame(st.session_state['male_bold']))
67
+
68
+ if st.session_state['female_bold'] and st.session_state['male_bold']:
69
+ st.subheader('Step 2: Generate Text')
70
+
71
+ if st.button('Generate Text'):
72
+ GPT2 = gpt2()
73
+ st.session_state['male_prompts'] = [p['prompts'] for p in st.session_state['male_bold']]
74
+ st.session_state['female_prompts'] = [p['prompts'] for p in st.session_state['female_bold']]
75
+ st.session_state['male_wiki_continuation'] = [p['wikipedia'].replace(p['prompts'], '') for p in
76
+ st.session_state['male_bold']]
77
+ st.session_state['female_wiki_continuation'] = [p['wikipedia'].replace(p['prompts'], '') for p in
78
+ st.session_state['female_bold']]
79
+
80
+ progress_bar = st.progress(0)
81
+
82
+ st.write('Generating text for male prompts...')
83
+ male_generation = GPT2.text_generation(st.session_state['male_prompts'], pad_token_id=50256, max_length=50,
84
+ do_sample=False, truncation=True)
85
+ st.session_state['male_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
86
+ zip(male_generation, st.session_state['male_prompts'])]
87
+
88
+ progress_bar.progress(50)
89
+
90
+ st.write('Generating text for female prompts...')
91
+ female_generation = GPT2.text_generation(st.session_state['female_prompts'], pad_token_id=50256,
92
+ max_length=50, do_sample=False, truncation=True)
93
+ st.session_state['female_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
94
+ zip(female_generation, st.session_state['female_prompts'])]
95
+
96
+ progress_bar.progress(100)
97
+ st.write('Text generation completed.')
98
+
99
+ if st.session_state.get('male_continuations') and st.session_state.get('female_continuations'):
100
+ st.subheader('Step 3: Sample Generated Texts')
101
+
102
+ st.write("Male Data Samples:")
103
+ samples_df = pd.DataFrame({
104
+ 'Male Prompt': st.session_state['male_prompts'],
105
+ 'Male Continuation': st.session_state['male_continuations'],
106
+ 'Male Wiki Continuation': st.session_state['male_wiki_continuation'],
107
+ })
108
+ st.write(samples_df)
109
+
110
+ st.write("Female Data Samples:")
111
+ samples_df = pd.DataFrame({
112
+ 'Female Prompt': st.session_state['female_prompts'],
113
+ 'Female Continuation': st.session_state['female_continuations'],
114
+ 'Female Wiki Continuation': st.session_state['female_wiki_continuation'],
115
+ })
116
+ st.write(samples_df)
117
+
118
+ if st.button('Evaluate'):
119
+ st.subheader('Step 4: Regard Results')
120
+ regard = Regard("inner_compare")
121
+ st.write('Computing regard results to compare male and female continuations...')
122
+
123
+ with st.spinner('Computing regard results...'):
124
+ regard_male_results = regard.compute(data=st.session_state['male_continuations'],
125
+ references=st.session_state['male_wiki_continuation'])
126
+ st.write('**Raw Regard Results:**')
127
+ st.json(regard_male_results)
128
+ st.session_state['rmr'] = regard_male_results
129
+
130
+ regard_female_results = regard.compute(data=st.session_state['female_continuations'],
131
+ references=st.session_state['female_wiki_continuation'])
132
+ st.write('**Average Regard Results:**')
133
+ st.json(regard_female_results)
134
+ st.session_state['rfr'] = regard_female_results
135
+
136
+ if st.button('Plot'):
137
+ st.subheader('Step 5: Regard Results Plotting')
138
+ categories = ['GPT2', 'Wiki']
139
+
140
+ mp_gpt = st.session_state['rmr']['no_ref_diff_mean']['positive']
141
+ mn_gpt = st.session_state['rmr']['no_ref_diff_mean']['negative']
142
+ mo_gpt = 1 - (mp_gpt + mn_gpt)
143
+
144
+ mp_wiki = mp_gpt - st.session_state['rmr']['ref_diff_mean']['positive']
145
+ mn_wiki = mn_gpt -st.session_state['rmr']['ref_diff_mean']['negative']
146
+ mo_wiki = 1 - (mn_wiki + mp_wiki)
147
+
148
+ fp_gpt = st.session_state['rfr']['no_ref_diff_mean']['positive']
149
+ fn_gpt = st.session_state['rfr']['no_ref_diff_mean']['negative']
150
+ fo_gpt = 1 - (fp_gpt + fn_gpt)
151
+
152
+ fp_wiki = fp_gpt - st.session_state['rfr']['ref_diff_mean']['positive']
153
+ fn_wiki = fn_gpt - st.session_state['rfr']['ref_diff_mean']['negative']
154
+ fo_wiki = 1 - (fn_wiki + fp_wiki)
155
+
156
+ positive_m = [mp_gpt, mp_wiki]
157
+ other_m = [mo_gpt, mo_wiki]
158
+ negative_m = [mn_gpt, mn_wiki]
159
+
160
+ positive_f = [fp_gpt, fp_wiki]
161
+ other_f = [fo_gpt, fo_wiki]
162
+ negative_f = [fn_gpt, fn_wiki]
163
+
164
+ # Plotting
165
+ fig_a, ax_a = plt.subplots()
166
+ ax_a.bar(categories, negative_m, label='Negative', color='blue')
167
+ ax_a.bar(categories, other_m, bottom=negative_m, label='Other', color='orange')
168
+ ax_a.bar(categories, positive_m, bottom=[negative_m[i] + other_m[i] for i in range(len(negative_m))],
169
+ label='Positive', color='green')
170
+
171
+ plt.xlabel('Categories')
172
+ plt.ylabel('Proportion')
173
+ plt.title('GPT vs Wiki on male regard')
174
+ plt.legend()
175
+
176
+ st.pyplot(fig_a)
177
+
178
+ fig_b, ax_b = plt.subplots()
179
+ ax_b.bar(categories, negative_f, label='Negative', color='blue')
180
+ ax_b.bar(categories, other_f, bottom=negative_f, label='Other', color='orange')
181
+ ax_b.bar(categories, positive_f, bottom=[negative_f[i] + other_f[i] for i in range(len(negative_f))],
182
+ label='Positive', color='green')
183
+
184
+ plt.xlabel('Categories')
185
+ plt.ylabel('Proportion')
186
+ plt.title('GPT vs Wiki on female regard')
187
+ plt.legend()
188
+ st.pyplot(fig_b)
189
+
190
+ m_increase = mp_gpt - mn_gpt
191
+ m_relative_increase = mp_gpt - mp_wiki - (mn_gpt - mn_wiki)
192
+ f_increase = fp_gpt - fn_gpt
193
+ f_relative_increase = fp_gpt - fp_wiki - (fn_gpt - fn_wiki)
194
+
195
+ absolute_difference = [m_increase, f_increase]
196
+ relative_difference = [m_relative_increase, f_relative_increase]
197
+
198
+ new_categories = ['Male', 'Female']
199
+
200
+ fig_c, ax_c = plt.subplots()
201
+ ax_c.bar(new_categories, absolute_difference, label='Positive - Negative', color='#40E0D0')
202
+
203
+ plt.xlabel('Categories')
204
+ plt.ylabel('Proportion')
205
+ plt.title('Difference of positive and negative: Male vs Female')
206
+ plt.legend()
207
+ st.pyplot(fig_c)
208
+
209
+ fig_d, ax_d = plt.subplots()
210
+ ax_d.bar(new_categories, relative_difference, label='Positive - Negative', color='#40E0D0')
211
+
212
+ plt.xlabel('Categories')
213
+ plt.ylabel('Proportion')
214
+ plt.title('Difference of positive and negative (relative to Wiki): Male vs Female')
215
+ plt.legend()
216
+ st.pyplot(fig_d)
217
+
requirements.txt CHANGED
@@ -1,3 +1,4 @@
1
  openai
2
  transformers
3
- torch==2.0.1
 
 
1
  openai
2
  transformers
3
+ torch==2.0.1
4
+ matplotlib
utils/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (197 Bytes). View file
 
utils/__pycache__/metric.cpython-311.pyc ADDED
Binary file (5.82 kB). View file
 
utils/__pycache__/model.cpython-311.pyc ADDED
Binary file (1.05 kB). View file
 
utils/metric.py CHANGED
@@ -43,13 +43,27 @@ class Regard:
43
  return {"average_data_regard": pred_mean, "average_references_regard": ref_mean}
44
  else:
45
  return {"regard_difference": {key: pred_mean[key] - ref_mean.get(key, 0) for key in pred_mean}}
46
- else:
47
  pred_scores, pred_regard = self.regard(data)
48
- pred_mean = {k: mean(v) for k, v in pred_regard.items()}
49
- pred_max = {k: max(v) for k, v in pred_regard.items()}
50
- if aggregation == "maximum":
51
- return {"max_regard": pred_max}
52
- elif aggregation == "average":
53
- return {"average_regard": pred_mean}
54
- else:
55
- return {"regard": pred_scores}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  return {"average_data_regard": pred_mean, "average_references_regard": ref_mean}
44
  else:
45
  return {"regard_difference": {key: pred_mean[key] - ref_mean.get(key, 0) for key in pred_mean}}
46
+ elif self.config_name == "inner_compare":
47
  pred_scores, pred_regard = self.regard(data)
48
+ ref_scores, ref_regard = self.regard(references)
49
+
50
+ postive_pred_regard = pred_regard['positive']
51
+ positive_ref_regard = ref_regard['positive']
52
+ postive_diff_regard = list(range(len(postive_pred_regard)))
53
+ for score_index in range(len(postive_pred_regard)):
54
+ postive_diff_regard[score_index] = postive_pred_regard[score_index] - positive_ref_regard[score_index]
55
+
56
+ negative_pred_regard = pred_regard['negative']
57
+ negative_ref_regard = ref_regard['negative']
58
+ negative_diff_regard = list(range(len(negative_pred_regard)))
59
+ for score_index in range(len(negative_pred_regard)):
60
+ negative_diff_regard[score_index] = negative_pred_regard[score_index] - negative_ref_regard[score_index]
61
+
62
+ ref_diff_regard = {'positive': postive_diff_regard, 'negative': negative_diff_regard}
63
+ ref_diff_mean = {k: mean(v) for k, v in ref_diff_regard.items()}
64
+ no_ref_diff_regard = {'positive': postive_pred_regard, 'negative': negative_pred_regard}
65
+ no_ref_diff_mean = {k: mean(v) for k, v in no_ref_diff_regard.items()}
66
+
67
+ return {"ref_diff_mean": ref_diff_mean,
68
+ 'no_ref_diff_mean': no_ref_diff_mean}
69
+