ProgU
commited on
Commit
·
87700ed
1
Parent(s):
1ae558f
update metric and plot
Browse files- .env +2 -0
- .gitignore +3 -0
- .idea/.gitignore +3 -0
- .idea/LLM-Open-Generation-Bias.iml +10 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/vcs.xml +6 -0
- pages/2_new_Demo_1.py +217 -0
- requirements.txt +2 -1
- utils/__pycache__/__init__.cpython-311.pyc +0 -0
- utils/__pycache__/metric.cpython-311.pyc +0 -0
- utils/__pycache__/model.cpython-311.pyc +0 -0
- utils/metric.py +23 -9
.env
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# .env
|
2 |
+
PASSWORD=88888888
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.gitignore
|
2 |
+
.env
|
3 |
+
test.py
|
.idea/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
.idea/LLM-Open-Generation-Bias.iml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$">
|
5 |
+
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
6 |
+
</content>
|
7 |
+
<orderEntry type="inheritedJdk" />
|
8 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
9 |
+
</component>
|
10 |
+
</module>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 (LLM-Open-Generation-Bias)" project-jdk-type="Python SDK" />
|
4 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/LLM-Open-Generation-Bias.iml" filepath="$PROJECT_DIR$/.idea/LLM-Open-Generation-Bias.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/vcs.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="VcsDirectoryMappings">
|
4 |
+
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
5 |
+
</component>
|
6 |
+
</project>
|
pages/2_new_Demo_1.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import load_dataset, Dataset
|
4 |
+
from random import sample
|
5 |
+
from utils.metric import Regard
|
6 |
+
from utils.model import gpt2
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import os
|
9 |
+
|
10 |
+
# Set up the Streamlit interface
|
11 |
+
st.title('Gender Bias Analysis in Text Generation')
|
12 |
+
|
13 |
+
|
14 |
+
def check_password():
|
15 |
+
def password_entered():
|
16 |
+
if password_input == os.getenv('PASSWORD'):
|
17 |
+
# if password_input == " ":
|
18 |
+
st.session_state['password_correct'] = True
|
19 |
+
else:
|
20 |
+
st.error("Incorrect Password, please try again.")
|
21 |
+
|
22 |
+
password_input = st.text_input("Enter Password:", type="password")
|
23 |
+
submit_button = st.button("Submit", on_click=password_entered)
|
24 |
+
|
25 |
+
if submit_button and not st.session_state.get('password_correct', False):
|
26 |
+
st.error("Please enter a valid password to access the demo.")
|
27 |
+
|
28 |
+
|
29 |
+
if not st.session_state.get('password_correct', False):
|
30 |
+
check_password()
|
31 |
+
else:
|
32 |
+
st.sidebar.success("Password Verified. Proceed with the demo.")
|
33 |
+
|
34 |
+
if 'data_size' not in st.session_state:
|
35 |
+
st.session_state['data_size'] = 10
|
36 |
+
if 'bold' not in st.session_state:
|
37 |
+
bold = pd.DataFrame({})
|
38 |
+
bold_raw = pd.DataFrame(load_dataset("AlexaAI/bold", split="train"))
|
39 |
+
for index, row in bold_raw.iterrows():
|
40 |
+
bold_raw_prompts = list(row['prompts'])
|
41 |
+
bold_raw_wikipedia = list(row['wikipedia'])
|
42 |
+
bold_expansion = zip(bold_raw_prompts, bold_raw_wikipedia)
|
43 |
+
for bold_prompt, bold_wikipedia in bold_expansion:
|
44 |
+
bold = bold._append(
|
45 |
+
{'domain': row['domain'], 'name': row['name'], 'category': row['category'], 'prompts': bold_prompt,
|
46 |
+
'wikipedia': bold_wikipedia}, ignore_index=True)
|
47 |
+
st.session_state['bold'] = Dataset.from_pandas(bold)
|
48 |
+
if 'female_bold' not in st.session_state:
|
49 |
+
st.session_state['female_bold'] = []
|
50 |
+
if 'male_bold' not in st.session_state:
|
51 |
+
st.session_state['male_bold'] = []
|
52 |
+
|
53 |
+
st.subheader('Step 1: Set Data Size')
|
54 |
+
data_size = st.slider('Select number of samples per category:', min_value=1, max_value=50,
|
55 |
+
value=st.session_state['data_size'])
|
56 |
+
st.session_state['data_size'] = data_size
|
57 |
+
|
58 |
+
if st.button('Show Data'):
|
59 |
+
st.session_state['female_bold'] = sample(
|
60 |
+
[p for p in st.session_state['bold'] if p['category'] == 'American_actresses'], data_size)
|
61 |
+
st.session_state['male_bold'] = sample(
|
62 |
+
[p for p in st.session_state['bold'] if p['category'] == 'American_actors'], data_size)
|
63 |
+
|
64 |
+
st.write(f'Sampled {data_size} female and male American actors.')
|
65 |
+
st.write('**Female Samples:**', pd.DataFrame(st.session_state['female_bold']))
|
66 |
+
st.write('**Male Samples:**', pd.DataFrame(st.session_state['male_bold']))
|
67 |
+
|
68 |
+
if st.session_state['female_bold'] and st.session_state['male_bold']:
|
69 |
+
st.subheader('Step 2: Generate Text')
|
70 |
+
|
71 |
+
if st.button('Generate Text'):
|
72 |
+
GPT2 = gpt2()
|
73 |
+
st.session_state['male_prompts'] = [p['prompts'] for p in st.session_state['male_bold']]
|
74 |
+
st.session_state['female_prompts'] = [p['prompts'] for p in st.session_state['female_bold']]
|
75 |
+
st.session_state['male_wiki_continuation'] = [p['wikipedia'].replace(p['prompts'], '') for p in
|
76 |
+
st.session_state['male_bold']]
|
77 |
+
st.session_state['female_wiki_continuation'] = [p['wikipedia'].replace(p['prompts'], '') for p in
|
78 |
+
st.session_state['female_bold']]
|
79 |
+
|
80 |
+
progress_bar = st.progress(0)
|
81 |
+
|
82 |
+
st.write('Generating text for male prompts...')
|
83 |
+
male_generation = GPT2.text_generation(st.session_state['male_prompts'], pad_token_id=50256, max_length=50,
|
84 |
+
do_sample=False, truncation=True)
|
85 |
+
st.session_state['male_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
86 |
+
zip(male_generation, st.session_state['male_prompts'])]
|
87 |
+
|
88 |
+
progress_bar.progress(50)
|
89 |
+
|
90 |
+
st.write('Generating text for female prompts...')
|
91 |
+
female_generation = GPT2.text_generation(st.session_state['female_prompts'], pad_token_id=50256,
|
92 |
+
max_length=50, do_sample=False, truncation=True)
|
93 |
+
st.session_state['female_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
94 |
+
zip(female_generation, st.session_state['female_prompts'])]
|
95 |
+
|
96 |
+
progress_bar.progress(100)
|
97 |
+
st.write('Text generation completed.')
|
98 |
+
|
99 |
+
if st.session_state.get('male_continuations') and st.session_state.get('female_continuations'):
|
100 |
+
st.subheader('Step 3: Sample Generated Texts')
|
101 |
+
|
102 |
+
st.write("Male Data Samples:")
|
103 |
+
samples_df = pd.DataFrame({
|
104 |
+
'Male Prompt': st.session_state['male_prompts'],
|
105 |
+
'Male Continuation': st.session_state['male_continuations'],
|
106 |
+
'Male Wiki Continuation': st.session_state['male_wiki_continuation'],
|
107 |
+
})
|
108 |
+
st.write(samples_df)
|
109 |
+
|
110 |
+
st.write("Female Data Samples:")
|
111 |
+
samples_df = pd.DataFrame({
|
112 |
+
'Female Prompt': st.session_state['female_prompts'],
|
113 |
+
'Female Continuation': st.session_state['female_continuations'],
|
114 |
+
'Female Wiki Continuation': st.session_state['female_wiki_continuation'],
|
115 |
+
})
|
116 |
+
st.write(samples_df)
|
117 |
+
|
118 |
+
if st.button('Evaluate'):
|
119 |
+
st.subheader('Step 4: Regard Results')
|
120 |
+
regard = Regard("inner_compare")
|
121 |
+
st.write('Computing regard results to compare male and female continuations...')
|
122 |
+
|
123 |
+
with st.spinner('Computing regard results...'):
|
124 |
+
regard_male_results = regard.compute(data=st.session_state['male_continuations'],
|
125 |
+
references=st.session_state['male_wiki_continuation'])
|
126 |
+
st.write('**Raw Regard Results:**')
|
127 |
+
st.json(regard_male_results)
|
128 |
+
st.session_state['rmr'] = regard_male_results
|
129 |
+
|
130 |
+
regard_female_results = regard.compute(data=st.session_state['female_continuations'],
|
131 |
+
references=st.session_state['female_wiki_continuation'])
|
132 |
+
st.write('**Average Regard Results:**')
|
133 |
+
st.json(regard_female_results)
|
134 |
+
st.session_state['rfr'] = regard_female_results
|
135 |
+
|
136 |
+
if st.button('Plot'):
|
137 |
+
st.subheader('Step 5: Regard Results Plotting')
|
138 |
+
categories = ['GPT2', 'Wiki']
|
139 |
+
|
140 |
+
mp_gpt = st.session_state['rmr']['no_ref_diff_mean']['positive']
|
141 |
+
mn_gpt = st.session_state['rmr']['no_ref_diff_mean']['negative']
|
142 |
+
mo_gpt = 1 - (mp_gpt + mn_gpt)
|
143 |
+
|
144 |
+
mp_wiki = mp_gpt - st.session_state['rmr']['ref_diff_mean']['positive']
|
145 |
+
mn_wiki = mn_gpt -st.session_state['rmr']['ref_diff_mean']['negative']
|
146 |
+
mo_wiki = 1 - (mn_wiki + mp_wiki)
|
147 |
+
|
148 |
+
fp_gpt = st.session_state['rfr']['no_ref_diff_mean']['positive']
|
149 |
+
fn_gpt = st.session_state['rfr']['no_ref_diff_mean']['negative']
|
150 |
+
fo_gpt = 1 - (fp_gpt + fn_gpt)
|
151 |
+
|
152 |
+
fp_wiki = fp_gpt - st.session_state['rfr']['ref_diff_mean']['positive']
|
153 |
+
fn_wiki = fn_gpt - st.session_state['rfr']['ref_diff_mean']['negative']
|
154 |
+
fo_wiki = 1 - (fn_wiki + fp_wiki)
|
155 |
+
|
156 |
+
positive_m = [mp_gpt, mp_wiki]
|
157 |
+
other_m = [mo_gpt, mo_wiki]
|
158 |
+
negative_m = [mn_gpt, mn_wiki]
|
159 |
+
|
160 |
+
positive_f = [fp_gpt, fp_wiki]
|
161 |
+
other_f = [fo_gpt, fo_wiki]
|
162 |
+
negative_f = [fn_gpt, fn_wiki]
|
163 |
+
|
164 |
+
# Plotting
|
165 |
+
fig_a, ax_a = plt.subplots()
|
166 |
+
ax_a.bar(categories, negative_m, label='Negative', color='blue')
|
167 |
+
ax_a.bar(categories, other_m, bottom=negative_m, label='Other', color='orange')
|
168 |
+
ax_a.bar(categories, positive_m, bottom=[negative_m[i] + other_m[i] for i in range(len(negative_m))],
|
169 |
+
label='Positive', color='green')
|
170 |
+
|
171 |
+
plt.xlabel('Categories')
|
172 |
+
plt.ylabel('Proportion')
|
173 |
+
plt.title('GPT vs Wiki on male regard')
|
174 |
+
plt.legend()
|
175 |
+
|
176 |
+
st.pyplot(fig_a)
|
177 |
+
|
178 |
+
fig_b, ax_b = plt.subplots()
|
179 |
+
ax_b.bar(categories, negative_f, label='Negative', color='blue')
|
180 |
+
ax_b.bar(categories, other_f, bottom=negative_f, label='Other', color='orange')
|
181 |
+
ax_b.bar(categories, positive_f, bottom=[negative_f[i] + other_f[i] for i in range(len(negative_f))],
|
182 |
+
label='Positive', color='green')
|
183 |
+
|
184 |
+
plt.xlabel('Categories')
|
185 |
+
plt.ylabel('Proportion')
|
186 |
+
plt.title('GPT vs Wiki on female regard')
|
187 |
+
plt.legend()
|
188 |
+
st.pyplot(fig_b)
|
189 |
+
|
190 |
+
m_increase = mp_gpt - mn_gpt
|
191 |
+
m_relative_increase = mp_gpt - mp_wiki - (mn_gpt - mn_wiki)
|
192 |
+
f_increase = fp_gpt - fn_gpt
|
193 |
+
f_relative_increase = fp_gpt - fp_wiki - (fn_gpt - fn_wiki)
|
194 |
+
|
195 |
+
absolute_difference = [m_increase, f_increase]
|
196 |
+
relative_difference = [m_relative_increase, f_relative_increase]
|
197 |
+
|
198 |
+
new_categories = ['Male', 'Female']
|
199 |
+
|
200 |
+
fig_c, ax_c = plt.subplots()
|
201 |
+
ax_c.bar(new_categories, absolute_difference, label='Positive - Negative', color='#40E0D0')
|
202 |
+
|
203 |
+
plt.xlabel('Categories')
|
204 |
+
plt.ylabel('Proportion')
|
205 |
+
plt.title('Difference of positive and negative: Male vs Female')
|
206 |
+
plt.legend()
|
207 |
+
st.pyplot(fig_c)
|
208 |
+
|
209 |
+
fig_d, ax_d = plt.subplots()
|
210 |
+
ax_d.bar(new_categories, relative_difference, label='Positive - Negative', color='#40E0D0')
|
211 |
+
|
212 |
+
plt.xlabel('Categories')
|
213 |
+
plt.ylabel('Proportion')
|
214 |
+
plt.title('Difference of positive and negative (relative to Wiki): Male vs Female')
|
215 |
+
plt.legend()
|
216 |
+
st.pyplot(fig_d)
|
217 |
+
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
openai
|
2 |
transformers
|
3 |
-
torch==2.0.1
|
|
|
|
1 |
openai
|
2 |
transformers
|
3 |
+
torch==2.0.1
|
4 |
+
matplotlib
|
utils/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (197 Bytes). View file
|
|
utils/__pycache__/metric.cpython-311.pyc
ADDED
Binary file (5.82 kB). View file
|
|
utils/__pycache__/model.cpython-311.pyc
ADDED
Binary file (1.05 kB). View file
|
|
utils/metric.py
CHANGED
@@ -43,13 +43,27 @@ class Regard:
|
|
43 |
return {"average_data_regard": pred_mean, "average_references_regard": ref_mean}
|
44 |
else:
|
45 |
return {"regard_difference": {key: pred_mean[key] - ref_mean.get(key, 0) for key in pred_mean}}
|
46 |
-
|
47 |
pred_scores, pred_regard = self.regard(data)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
return {"average_data_regard": pred_mean, "average_references_regard": ref_mean}
|
44 |
else:
|
45 |
return {"regard_difference": {key: pred_mean[key] - ref_mean.get(key, 0) for key in pred_mean}}
|
46 |
+
elif self.config_name == "inner_compare":
|
47 |
pred_scores, pred_regard = self.regard(data)
|
48 |
+
ref_scores, ref_regard = self.regard(references)
|
49 |
+
|
50 |
+
postive_pred_regard = pred_regard['positive']
|
51 |
+
positive_ref_regard = ref_regard['positive']
|
52 |
+
postive_diff_regard = list(range(len(postive_pred_regard)))
|
53 |
+
for score_index in range(len(postive_pred_regard)):
|
54 |
+
postive_diff_regard[score_index] = postive_pred_regard[score_index] - positive_ref_regard[score_index]
|
55 |
+
|
56 |
+
negative_pred_regard = pred_regard['negative']
|
57 |
+
negative_ref_regard = ref_regard['negative']
|
58 |
+
negative_diff_regard = list(range(len(negative_pred_regard)))
|
59 |
+
for score_index in range(len(negative_pred_regard)):
|
60 |
+
negative_diff_regard[score_index] = negative_pred_regard[score_index] - negative_ref_regard[score_index]
|
61 |
+
|
62 |
+
ref_diff_regard = {'positive': postive_diff_regard, 'negative': negative_diff_regard}
|
63 |
+
ref_diff_mean = {k: mean(v) for k, v in ref_diff_regard.items()}
|
64 |
+
no_ref_diff_regard = {'positive': postive_pred_regard, 'negative': negative_pred_regard}
|
65 |
+
no_ref_diff_mean = {k: mean(v) for k, v in no_ref_diff_regard.items()}
|
66 |
+
|
67 |
+
return {"ref_diff_mean": ref_diff_mean,
|
68 |
+
'no_ref_diff_mean': no_ref_diff_mean}
|
69 |
+
|