Zekun Wu
commited on
Commit
·
44466c7
1
Parent(s):
1da3bb7
update
Browse files- pages/1_Demo_1.py +63 -0
- requirements.txt +3 -1
- utils/__init__.py +0 -0
- utils/dataset.py +0 -0
- utils/metric.py +55 -0
- utils/model.py +19 -0
pages/1_Demo_1.py
CHANGED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import load_dataset
|
4 |
+
from random import sample
|
5 |
+
from utils.metric import Regard
|
6 |
+
from utils.model import gpt2
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Set up the Streamlit interface
|
10 |
+
st.title('Gender Bias Analysis in Text Generation')
|
11 |
+
|
12 |
+
|
13 |
+
def check_password():
|
14 |
+
def password_entered():
|
15 |
+
if password_input == os.getenv('PASSWORD'):
|
16 |
+
st.session_state['password_correct'] = True
|
17 |
+
else:
|
18 |
+
st.error("Incorrect Password, please try again.")
|
19 |
+
|
20 |
+
password_input = st.text_input("Enter Password:", type="password")
|
21 |
+
submit_button = st.button("Submit", on_click=password_entered)
|
22 |
+
|
23 |
+
if st.session_state.get('password_correct', False):
|
24 |
+
load_and_process_data()
|
25 |
+
else:
|
26 |
+
st.error("Please enter a valid password to access the demo.")
|
27 |
+
|
28 |
+
|
29 |
+
def load_and_process_data():
|
30 |
+
st.subheader('Loading and Processing Data')
|
31 |
+
st.write('Loading the BOLD dataset...')
|
32 |
+
bold = load_dataset("AlexaAI/bold", split="train")
|
33 |
+
|
34 |
+
st.write('Sampling 10 female and male American actors...')
|
35 |
+
female_bold = sample([p for p in bold if p['category'] == 'American_actresses'], 10)
|
36 |
+
male_bold = sample([p for p in bold if p['category'] == 'American_actors'], 10)
|
37 |
+
|
38 |
+
male_prompts = [p['prompts'][0] for p in male_bold]
|
39 |
+
female_prompts = [p['prompts'][0] for p in female_bold]
|
40 |
+
|
41 |
+
GPT2 = gpt2()
|
42 |
+
|
43 |
+
st.write('Generating text for male prompts...')
|
44 |
+
male_generation = GPT2.generate_text(male_prompts, pad_token_id=50256, max_length=50, do_sample=False)
|
45 |
+
male_continuations = [gen.replace(prompt, '') for gen, prompt in zip(male_generation, male_prompts)]
|
46 |
+
|
47 |
+
st.write('Generating text for female prompts...')
|
48 |
+
female_generation = GPT2.generate_text(female_prompts, pad_token_id=50256, max_length=50, do_sample=False)
|
49 |
+
female_continuations = [gen.replace(prompt, '') for gen, prompt in zip(female_generation, female_prompts)]
|
50 |
+
|
51 |
+
st.write('Generated {} male continuations'.format(len(male_continuations)))
|
52 |
+
st.write('Generated {} female continuations'.format(len(female_continuations)))
|
53 |
+
|
54 |
+
st.subheader('Sample Generated Texts')
|
55 |
+
st.write('**Male Prompt:**', male_prompts[0])
|
56 |
+
st.write('**Male Continuation:**', male_continuations[0])
|
57 |
+
st.write('**Female Prompt:**', female_prompts[0])
|
58 |
+
st.write('**Female Continuation:**', female_continuations[0])
|
59 |
+
|
60 |
+
regard = Regard("compare")
|
61 |
+
st.write('Computing regard results to compare male and female continuations...')
|
62 |
+
regard_results = regard.compute(data=male_continuations, references=female_continuations)
|
63 |
+
st.write(regard
|
requirements.txt
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
openai
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
transformers
|
3 |
+
torch==2.0.1
|
utils/__init__.py
ADDED
File without changes
|
utils/dataset.py
ADDED
File without changes
|
utils/metric.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
from statistics import mean
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
class Regard:
|
8 |
+
|
9 |
+
def __init__(self, config_name):
|
10 |
+
self.config_name = config_name
|
11 |
+
regard_tokenizer = AutoTokenizer.from_pretrained("sasha/regardv3")
|
12 |
+
regard_model = AutoModelForSequenceClassification.from_pretrained("sasha/regardv3")
|
13 |
+
self.regard_classifier = pipeline(
|
14 |
+
"text-classification", model=regard_model, top_k=4, tokenizer=regard_tokenizer, truncation=True)
|
15 |
+
|
16 |
+
def regard(self,group):
|
17 |
+
group_scores = defaultdict(list)
|
18 |
+
group_regard = self.regard_classifier(group)
|
19 |
+
for pred in group_regard:
|
20 |
+
for pred_score in pred:
|
21 |
+
group_scores[pred_score["label"]].append(pred_score["score"])
|
22 |
+
return group_regard, dict(group_scores)
|
23 |
+
|
24 |
+
def compute(
|
25 |
+
self,
|
26 |
+
data,
|
27 |
+
references=None,
|
28 |
+
aggregation=None,
|
29 |
+
):
|
30 |
+
if self.config_name == "compare":
|
31 |
+
pred_scores, pred_regard = self.regard(data)
|
32 |
+
ref_scores, ref_regard = self.regard(references)
|
33 |
+
pred_mean = {k: mean(v) for k, v in pred_regard.items()}
|
34 |
+
pred_max = {k: max(v) for k, v in pred_regard.items()}
|
35 |
+
ref_mean = {k: mean(v) for k, v in ref_regard.items()}
|
36 |
+
ref_max = {k: max(v) for k, v in ref_regard.items()}
|
37 |
+
if aggregation == "maximum":
|
38 |
+
return {
|
39 |
+
"max_data_regard": pred_max,
|
40 |
+
"max_references_regard": ref_max,
|
41 |
+
}
|
42 |
+
elif aggregation == "average":
|
43 |
+
return {"average_data_regard": pred_mean, "average_references_regard": ref_mean}
|
44 |
+
else:
|
45 |
+
return {"regard_difference": {key: pred_mean[key] - ref_mean.get(key, 0) for key in pred_mean}}
|
46 |
+
else:
|
47 |
+
pred_scores, pred_regard = self.regard(data)
|
48 |
+
pred_mean = {k: mean(v) for k, v in pred_regard.items()}
|
49 |
+
pred_max = {k: max(v) for k, v in pred_regard.items()}
|
50 |
+
if aggregation == "maximum":
|
51 |
+
return {"max_regard": pred_max}
|
52 |
+
elif aggregation == "average":
|
53 |
+
return {"average_regard": pred_mean}
|
54 |
+
else:
|
55 |
+
return {"regard": pred_scores}
|
utils/model.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, AutoTokenizer
|
2 |
+
|
3 |
+
|
4 |
+
class gpt2:
|
5 |
+
def __init__(self,device="cpu"):
|
6 |
+
self.text_generation = pipeline("text-generation", model="gpt2",device=device)
|
7 |
+
self.tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
8 |
+
|
9 |
+
def generate_text(self,**kwargs):
|
10 |
+
results = self.text_generation(**kwargs)
|
11 |
+
|
12 |
+
return [item['generated_text'] for item in results[0]]
|
13 |
+
|
14 |
+
def get_tokenizer(self):
|
15 |
+
return self.tokenizer
|
16 |
+
|
17 |
+
if __name__ == '__main__':
|
18 |
+
gpt2 = gpt2()
|
19 |
+
print(gpt2.generate_text(["Hello, how are you?","I am fine, thank you."]))
|