import numpy as np import pandas as pd import os import glob import random import matplotlib.pyplot as plt import cv2 import plotly.express as px from annoy import AnnoyIndex from PIL import Image from tqdm import tqdm # https://github.com/erikbern/ann-presentation/blob/master/cifar.py # https://www.slideshare.net/erikbern/approximate-nearest-neighbor-methods-and-vector-models-nyc-ml-meetup # https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html # t-SNE space def get_top_n_dissimilar_samples_path(embeddings,embeddings_id_list,test_size_ratio =0.1, annoy_path=None): if annoy_path is None: build_annoy_tree(embeddings, embeddings_id_list,annoy_path, n_trees=50) annoy_tree = load_annoy_tree(embeddings.shape[1],annoy_path) dist_map = create_distance_map(annoy_tree,embeddings_id_list) sorted_isolation_values, sorted_indices = get_isolated_elements_from_distance_map(dist_map,embeddings_id_list) _, test_paths = splitListByIsolationValues(embeddings_id_list, sorted_indices, test_size_ratio) return test_paths def build_annoy_tree(embeddings, embeddings_id_list,save_filename, n_trees=50): tree = AnnoyIndex(embeddings.shape[1], 'euclidean') ntree = n_trees # add all items for path, vector in zip(list(range(len(embeddings_id_list))),embeddings): tree.add_item(path, vector) # build tree tree.build(ntree) tree.save(save_filename) def load_annoy_tree(embeddings_dim,annoy_fn): a = AnnoyIndex(embeddings_dim, 'euclidean') a.load(annoy_fn) return a def create_distance_map(annoy_tree,embeddings_id_list): # generate distance map distance_map = np.zeros((len(embeddings_id_list),len(embeddings_id_list)),np.float32) for i in tqdm(range(len(embeddings_id_list))): for j in range(len(embeddings_id_list)): distance_map[i,j] = annoy_tree.get_distance(i,j) return distance_map def get_isolated_elements_from_distance_map(distance_map,embeddings_id_list): # Now, sample n percent of the ones with maximum distances to closest neighbors. Isolated ones. test_samples = np.where(distance_map == 0, 500, distance_map) isolation_values = np.min(test_samples,1) # get results in descending order sorted_isolation_values, sorted_indices = zip(*sorted(zip(isolation_values, list(range(len(embeddings_id_list)))),reverse=True)) return sorted_isolation_values, sorted_indices def splitListByIsolationValues(lst, sorted_indices, test_part=0.1): # TEST_SIZE = 0.05 # Percentage of test data from all # train_paths, test_paths = splitListByIsolationValues(train_id_list, sorted_indices, TEST_SIZE) # print(len(train_paths)) # print(len(test_paths)) n_test = int(len(lst)*test_part) indices_test = sorted_indices[:n_test] indices_train = sorted_indices[n_test:] lst_train = [lst[ind] for ind in indices_train] lst_test = [lst[ind] for ind in indices_test] return lst_train, lst_test # tree = AnnoyIndex(train_tsne_2d.shape[1], 'euclidean') # ntree = 50 # # add all items # for path, vector in zip(list(range(len(train_id_list))),train_tsne_2d): # tree.add_item(path, vector) # # build tree # _ = tree.build(ntree) # # generate distance map # distance_map = np.zeros((len(train_id_list),len(train_id_list)),np.float32) # for i in tqdm(range(len(train_id_list))): # for j in range(len(train_id_list)): # distance_map[i,j] = tree.get_distance(i,j) # # Now, sample n percent of the ones with maximum distances to closest neighbors. Isolated ones. # test_samples = np.where(distance_map == 0, 500, distance_map) # isolation_values = np.min(test_samples,1) # # get results in descending order # sorted_isolation_values, sorted_indices = zip(*sorted(zip(isolation_values, list(range(len(train_id_list)))),reverse=True)) # print(sorted_isolation_values[:5],sorted_indices[:5]) # #Plot some of the images and compare them to rest of the set to see if there are any similar samples. # for isolated_id in sorted_indices[:10]: # plot_n_similar(isolated_id,4) # plt.show() # TEST_SIZE = 0.05 # Percentage of test data from all # train_paths, test_paths = splitListByIsolationValues(train_id_list, sorted_indices, TEST_SIZE) # print(len(train_paths)) # print(len(test_paths)) # def build(fn, f, fun): # lol @ parameters :) # a = annoy.AnnoyIndex(f, 'euclidean') # i = 0 # for pixels, label in read_cifar(): # a.add_item(i, fun(pixels)) # i += 1 # if i % 1000 == 0: # print i, '...' # a.build(100) # a.save(fn) # def build_annoy_tree(): # annoy_fn = 'mnist.annoy' # data_fn = 'mnist.pkl.gz' # if not os.path.exists(annoy_fn): # if not os.path.exists(data_fn): # print 'downloading' # urlretrieve('http://deeplearning.net/data/mnist/mnist.pkl.gz', data_fn) # a = annoy.AnnoyIndex(784, 'euclidean') # for i, pic in util.get_vectors(data_fn): # a.add_item(i, pic) # print 'building' # a.build(10) # a.save(annoy_fn) def scatter_thumbnails_train_test(data, image_paths, train_labels, test_paths, zoom=0.3, colors=None, xlabel='PCA dimension 1', ylabel='PCA dimension 2'): # assert len(data) == len(image_paths) # reduce embedding dimensions to 2 # x = PCA(n_components=2).fit_transform(data) #if len(data[0]) > 2 else data x = data tmp_colors = ['y', 'g', 'b', 'c'] f = plt.figure(figsize=(22, 15)) ax = plt.subplot(aspect='equal') np_label = np.array(train_labels) cls_categories = ['CNV', 'DRUSEN', 'DME', 'NORMAL'] for cls,clr in zip(cls_categories,tmp_colors): indices = np_label==cls ax.scatter(data[indices,0],data[indices,1], c=clr, label = cls ,alpha=0.5, s=4) _ = ax.axis('tight') ax.set_xlabel(xlabel, fontsize=14) ax.set_ylabel(ylabel, fontsize=14) ax.legend(fontsize='large', markerscale=2) # create a scatter plot. # f = plt.figure(figsize=(22, 15)) # ax = plt.subplot(aspect='equal') # sc = ax.scatter(x[:,0], x[:,1], s=4) # #_ = ax.axis('off') # _ = ax.axis('tight') # ax.set_xlabel(xlabel, fontsize=14) # ax.set_ylabel(ylabel, fontsize=14) # add thumbnails :) from matplotlib.offsetbox import OffsetImage, AnnotationBbox for i in range(len(image_paths)): isTest = image_paths[i] in test_paths if isTest: image = get_img(image_paths[i].replace("F:/","E:/"), thumbnail=True) if not (len(image.shape))==1: im = OffsetImage(image, cmap='gray',zoom=zoom if isTest else zoom-0.2) bboxprops = dict(edgecolor= 'red' if isTest else 'gray') ab = AnnotationBbox(im, x[i], xycoords='data', frameon=(bboxprops is not None), pad=0.0, bboxprops=bboxprops) ax.add_artist(ab) return ax # _ = scatter_thumbnails_train_test(train_tsne_2d, train_id_list, test_paths, # zoom=0.2, xlabel="Dimension 1", ylabel="Dimension 2") # plt.title('2D t-SNE Visualization of Sampled Data (OCT2017 Train) - RGB=Picked') # plt.show() def splitListByIsolationValues(lst, sorted_indices, test_part=0.1): n_test = int(len(lst)*test_part) indices_test = sorted_indices[:n_test] indices_train = sorted_indices[n_test:] lst_train = [lst[ind] for ind in indices_train] lst_test = [lst[ind] for ind in indices_test] return lst_train, lst_test def plot_random_samples(paths, n=5): f, ax = plt.subplots(1,5,figsize=(20,5)) for i in range(n): rand_index = random.randint(0,len(paths)-1) ax[i].imshow(plt.imread(paths[rand_index])) def get_img(fn ,thumbnail=False): img = Image.open(fn) if thumbnail: img.thumbnail((100,100)) #print(img.size) return np.array(img)[:,:] def plot_n_similar(annoy_tree,train_id_list,train_labels,seed_id,n, scale=5): ids, dists = annoy_tree.get_nns_by_item(seed_id, n+1, search_k=-1, include_distances=True) f,ax = plt.subplots(1,n+1,figsize=((n+1)*scale,scale)) for i,_id in enumerate(ids): img_id = _id if i != 0 else seed_id ax[i].imshow(get_img(train_id_list[img_id]),cmap='gray') title = "ID:{0}\nDistance: {1:.3f}\nLabel:{2}".format(img_id,dists[i],train_labels[img_id]) if i != 0 else "SEED ID:{0}\nLabel:{1}".format(img_id,train_labels[img_id]) ax[i].set_title(title,fontsize=12) f.suptitle("Images similar to seed_id {0}".format(seed_id),fontsize=18) plt.subplots_adjust(top=0.97) # plot_n_similar(5) # def match_gallery_2_query(save_dir): # gallery_emb = np.load(os.path.join(save_dir, 'gallery_embedding.npy')) # query_emb = np.load(os.path.join(save_dir, 'query_embedding.npy')) # gallery_ids = np.load(os.path.join(save_dir, 'gallery_ids.npy')) # query_ids = np.load(os.path.join(save_dir, 'query_ids.npy')) # query_results = [] # get_closest = None # if matching_method == 'annoy': # annoy_metric = 'hamming' if gallery_emb.dtype == np.bool else 'angular' # annoy_f = AnnoyIndex(gallery_emb.shape[1], annoy_metric) # for i in range(gallery_emb.shape[0]): # annoy_f.add_item(i, gallery_emb[i]) # annoy_f.build(10) # number of trees # def annoy_matching(query_item, query_index, n=10): # return annoy_f.get_nns_by_vector(query_item, n) # get_closest = annoy_matching # elif matching_method == 'knn': # #distances = distance.cdist(query_emb, gallery_emb, 'cosine') # #sorted_dist = np.argsort(distances, axis=1) # def knn_matching(query_item, query_index, n=10): # distances = distance.cdist((query_emb[query_index]).reshape(1,-1), gallery_emb, 'cosine') # sorted_dist = np.argsort(distances, axis=1) # return sorted_dist[0,:n] # get_closest = knn_matching # else: # raise Exception(f'{FLAGS.matching_method} not implemented in matching') # for i, query_item in tqdm(enumerate(query_emb),'Finding matches...'): # closest_idxs = get_closest(query_item, i, 10) # closest_fns = [gallery_ids[close_i] for close_i in closest_idxs] # beginning = f'{query_ids[i]},' + '{' # line = ','.join(closest_fns) # end = '}' # query_results.append(beginning + line + end) # sub_fn = os.path.join(save_dir, 'submission.csv') # with open(sub_fn, 'w') as f: # f.writelines("%s\n" % l for l in query_results) # plot_submission(sub_fn, FLAGS.testdata_dir, save_dir)