hodorfi commited on
Commit
2480f6a
·
1 Parent(s): 8751494

Delete pages

Browse files
pages/1_💾_Data.py DELETED
@@ -1,51 +0,0 @@
1
- # Read
2
- import streamlit as st
3
- import sys,os
4
-
5
-
6
- sys.path.append(f'{os.getcwd()}/utils')
7
- from utils.data_users import get_developer_page_layout,get_product_dev_page_layout
8
-
9
-
10
- print(os.getcwd())
11
- # st.write(st.session_state.user_group)
12
- USER_GROUPS = ["Developer", "Manager", "Practitioner"]
13
-
14
- st.set_page_config(layout="wide")
15
-
16
- if 'user_group' not in st.session_state:
17
- index_tmp = 0
18
- else:
19
- index_tmp = USER_GROUPS.index(st.session_state['user_group'])
20
-
21
- #Sidebar for USER GROUPS
22
- st.sidebar.title("USER GROUPS")
23
- backend = st.sidebar.selectbox(
24
- "Select User-Group ", USER_GROUPS, index=index_tmp
25
- )
26
-
27
- st.session_state['user_group'] = backend
28
-
29
- # # with st.sidebar:
30
- # st.sidebar.title("🎈Explore Data Panel")
31
-
32
- st.title("Explore Data Panel for OCT Image Analysis")
33
-
34
- st.write(
35
- """
36
- ##
37
- Examining the data is the key factor for better understanding of the AI system.Therefore,this panel introduces deta-centric approach by providing details regarding forllowing aspect of the data .
38
- """)
39
-
40
-
41
- list_test = """<ul>
42
- <li>Data Source Information: This tab contains information regarding following aspect of the data:
43
- modality,format, domain, ethical considerations including license and data version. </li>
44
- <li>Exploratory Data Stats: This tab includes exploratory data analysis info covering following aspects: train/validation/test data division,summary statistics, sample visualization from each category.</li>
45
- <li>Data Onboarding: This tab provides details of data pre-processing and post-processing steps applied over the dataset before traning, and data augmentations.</li>
46
- </ul>"""
47
- st.markdown(list_test, unsafe_allow_html=True)
48
-
49
-
50
- if backend == "Developer":
51
- get_product_dev_page_layout()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/1_💾_Data_Panel.py DELETED
@@ -1,57 +0,0 @@
1
- # Read
2
- import streamlit as st
3
- import sys,os
4
-
5
-
6
- sys.path.append(f'{os.getcwd()}/utils')
7
- from utils.data_users import get_product_dev_page_layout,get_product_manager_page_layout,get_product_practitioner_page_layout
8
-
9
-
10
- print(os.getcwd())
11
- # st.write(st.session_state.user_group)
12
- USER_GROUPS = ["Developer", "Manager", "Practitioner"]
13
-
14
- st.set_page_config(layout="wide")
15
-
16
- if 'user_group' not in st.session_state:
17
- index_tmp = 0
18
- else:
19
- index_tmp = USER_GROUPS.index(st.session_state['user_group'])
20
-
21
- #Sidebar for USER GROUPS
22
- st.sidebar.title("USER GROUPS")
23
- backend = st.sidebar.selectbox(
24
- "Select User-Group ", USER_GROUPS, index=index_tmp
25
- )
26
-
27
- st.session_state['user_group'] = backend
28
-
29
- # # with st.sidebar:
30
- # st.sidebar.title("🎈Explore Data Panel")
31
-
32
- st.title("Data Panel for OCT Image Analysis")
33
-
34
- st.write(
35
- """
36
- ##
37
- To gain a comprehensive understanding of the AI system, examining the data has a crucial role. The Data Panel adopts a data-centric approach, providing detailed information about the following aspects of the data:
38
- """)
39
-
40
-
41
- list_test = """<ul>
42
- <li>Data Source Information contains information related to the modality, format, domain, ethical considerations, including licensing and data version. </li>
43
- <li>Exploratory Data Stats presents exploratory data analysis information covering train/validation/test data division, summary statistics, and sample visualization from each category. </li>
44
- <li>Data Onboarding provides information about the data pre-processing and post-processing steps applied to the dataset before training, as well as any data augmentations that were used.</li>
45
- </ul>"""
46
- st.markdown(list_test, unsafe_allow_html=True)
47
-
48
-
49
- if backend == "Developer":
50
- get_product_dev_page_layout()
51
-
52
-
53
- if backend == "Manager":
54
- get_product_manager_page_layout()
55
-
56
- if backend == "Practitioner":
57
- get_product_practitioner_page_layout()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/2_📝_Model.py DELETED
@@ -1,46 +0,0 @@
1
- import streamlit as st
2
- import sys,os
3
-
4
-
5
- sys.path.append(f'{os.getcwd()}/utils')
6
- from utils.model_users import get_product_dev_page_layout
7
-
8
- # st.write(st.session_state.user_group)
9
- USER_GROUPS = ["Developer", "Manager", "Practitioner"]
10
-
11
- st.set_page_config(layout="wide")
12
-
13
- if 'user_group' not in st.session_state:
14
- index_tmp = 0
15
- else:
16
- index_tmp = USER_GROUPS.index(st.session_state['user_group'])
17
-
18
- #Sidebar for USER GROUPS
19
- st.sidebar.title("USER GROUPS")
20
- backend = st.sidebar.selectbox(
21
- "Select User-Group ", USER_GROUPS, index=index_tmp
22
- )
23
-
24
- st.session_state['user_group'] = backend
25
-
26
-
27
-
28
- st.title("Explore Model Panel for OCT Image Analysis")
29
- st.write(
30
- """
31
- The users can find following information regarding the AI model developed for the task: what the mode does, how it was developed and how it is used. Thus, we provide answers
32
- to those questions via below described tabs.
33
- """)
34
-
35
- list_test = """<ul>
36
- <li>Model generic information: This tab contains summary of the model’s details, including its main features, capabilities, and intended use.
37
- It also hihglights the model’s behaviour, such as the type of data inputs(image, feature etc) it can handle and the types of outputs it produces.</li>
38
- <li>Model development information: The tab includes information on the hyperparameters, model development framework such as Tensorflow or PyTorch, and other technical details. It also includes a complete analysis of the model’s inference performance, such as the model size,
39
- hardware-specific (GPU and CPU) inference time,and speed, as well as reproducibility check list.</li>
40
- <li>Model deployment information: This tab provides information on how the model is used in production, including details on the inference speed and latency,
41
- and how users can access and interact with the model in production.</li>
42
- </ul>"""
43
- st.markdown(list_test, unsafe_allow_html=True)
44
-
45
- if backend == "Developer":
46
- get_product_dev_page_layout()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/2_📝_Model_Panel.py DELETED
@@ -1,52 +0,0 @@
1
- import streamlit as st
2
- import sys,os
3
-
4
-
5
- sys.path.append(f'{os.getcwd()}/utils')
6
- from utils.model_users import get_product_dev_page_layout,get_product_manager_page_layout,get_product_practitioner_page_layout
7
-
8
- # st.write(st.session_state.user_group)
9
- USER_GROUPS = ["Developer", "Manager", "Practitioner"]
10
-
11
- st.set_page_config(layout="wide")
12
-
13
- if 'user_group' not in st.session_state:
14
- index_tmp = 0
15
- else:
16
- index_tmp = USER_GROUPS.index(st.session_state['user_group'])
17
-
18
- #Sidebar for USER GROUPS
19
- st.sidebar.title("USER GROUPS")
20
- backend = st.sidebar.selectbox(
21
- "Select User-Group ", USER_GROUPS, index=index_tmp
22
- )
23
-
24
- st.session_state['user_group'] = backend
25
-
26
-
27
-
28
- st.title("Model Panel for OCT Image Analysis")
29
- st.write(
30
- """
31
- The users can find following information regarding the AI model developed for the task: what is the purpose of the model, how it was developed and how it is used. Thus,answers
32
- to these questions areprovided via the tabs described below.
33
- """)
34
-
35
- list_test = """<ul>
36
- <li>Model Generic information contains a summary of the model’s details, including its main features, capabilities, and intended use.
37
- It also highlights the model’s behaviour, such as the type of data inputs(image, feature etc) it can handle and the types of outputs it produces.</li>
38
- <li>Model Development Information includes information on the hyperparameters, model development framework/library such as Tensorflow or PyTorch, and other technical details. It also includes a complete analysis of the model’s inference performance, such as the model size,
39
- hardware-specific (GPU and CPU) inference time,and speed, as well as reproducibility check list.</li>
40
- <li>Model Deployment Information provides information on how the model is used in production, including details on the inference speed and latency,
41
- and how users can access and interact with the model in production.</li>
42
- </ul>"""
43
- st.markdown(list_test, unsafe_allow_html=True)
44
-
45
- if backend == "Developer":
46
- get_product_dev_page_layout()
47
-
48
- if backend == "Manager":
49
- get_product_manager_page_layout()
50
-
51
- if backend == "Practitioner":
52
- get_product_practitioner_page_layout()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/3_🎯_Evaluation_Panel.py DELETED
@@ -1,41 +0,0 @@
1
- import streamlit as st
2
- import sys,os
3
-
4
- sys.path.append(f'{os.getcwd()}/utils')
5
-
6
- from utils.eval_users import get_product_dev_page_layout
7
-
8
- # st.write(st.session_state.user_group)
9
- USER_GROUPS = ["Developer", "Manager", "Practitioner"]
10
-
11
- st.set_page_config(layout="wide")
12
-
13
- if 'user_group' not in st.session_state:
14
- index_tmp = 0
15
- else:
16
- index_tmp = USER_GROUPS.index(st.session_state['user_group'])
17
-
18
- #Sidebar for USER GROUPS
19
- st.sidebar.title("USER GROUPS")
20
- backend = st.sidebar.selectbox(
21
- "Select User-Group ", USER_GROUPS, index=index_tmp
22
- )
23
-
24
- st.session_state['user_group'] = backend
25
-
26
- st.title("Explore Performance Panel for OCT Image Analysis")
27
- st.write(
28
- """
29
- This panel provides information on the evaluation of the AI model’s performance, including details on the metrics used and the results of the evaluation. USerrs can also find
30
- our notes regarding the issues. The performance metric visualizations and samples of failure and success cases are given in in this panel as well.""")
31
-
32
- list_test = """<ul>
33
- <li>Evaluation Metrics: This tab explains the details of the performance metrics and how each metric is calculated.
34
- Users can also find the characteristics of the evaluation data set. </li>
35
- <li>Performance Summary: This tab includes visualizations of the performance metrics over test set.</li>
36
- <li>Limitations: This tab provides examples of observed failure and success cases, along with visualizations and any possible observations behind the failure cases.</li>
37
- </ul>"""
38
- st.markdown(list_test, unsafe_allow_html=True)
39
-
40
- if backend == "Developer":
41
- get_product_dev_page_layout()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/3_🎯_Performance_Evaluation_Panel.py DELETED
@@ -1,42 +0,0 @@
1
- import streamlit as st
2
- import sys,os
3
-
4
- sys.path.append(f'{os.getcwd()}/utils')
5
-
6
- from utils.eval_users import get_product_dev_page_layout
7
-
8
- # st.write(st.session_state.user_group)
9
- USER_GROUPS = ["Developer", "Manager", "Practitioner"]
10
-
11
- st.set_page_config(layout="wide")
12
-
13
- if 'user_group' not in st.session_state:
14
- index_tmp = 0
15
- else:
16
- index_tmp = USER_GROUPS.index(st.session_state['user_group'])
17
-
18
- #Sidebar for USER GROUPS
19
- st.sidebar.title("USER GROUPS")
20
- backend = st.sidebar.selectbox(
21
- "Select User-Group ", USER_GROUPS, index=index_tmp
22
- )
23
-
24
- st.session_state['user_group'] = backend
25
-
26
- st.title("Performance Evaluation Panel for OCT Image Analysis")
27
- st.write(
28
- """
29
- This panel provides information on the evaluation of the AI model’s performance, including details on the metrics used and the results of the evaluation. Users can also find
30
- our notes regarding the encountered issues. The performance metric visualizations and samples of failure and success cases are given in this panel as well.""")
31
-
32
- list_test = """<ul>
33
- <li>Evaluation Metrics explains the details of the performance metrics and how each metric is calculated. </li>
34
- <li>Performance Summary includes visualizations of the performance metrics over the test set. Users can also find the characteristics of the evaluation data set</li>
35
- <li>Issues and Limitations provides examples of observed failure cases, along with visualizations and any possible observations behind the failure cases.</li>
36
- </ul>"""
37
- st.markdown(list_test, unsafe_allow_html=True)
38
-
39
-
40
- get_product_dev_page_layout()
41
- # if backend == "Developer":
42
- # get_product_dev_page_layout()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/4_🔬_Decision_Exploration_Panel.py DELETED
@@ -1,48 +0,0 @@
1
- import streamlit as st
2
- import sys,os
3
-
4
- sys.path.append(f'{os.getcwd()}/utils')
5
-
6
- from utils.decisions_users import get_product_dev_page_layout
7
-
8
- # st.write(st.session_state.user_group)
9
- USER_GROUPS = ["Developer", "Manager", "Practitioner"]
10
-
11
- st.set_page_config(layout="wide")
12
-
13
- if 'user_group' not in st.session_state:
14
- index_tmp = 0
15
- else:
16
- index_tmp = USER_GROUPS.index(st.session_state['user_group'])
17
-
18
- #Sidebar for USER GROUPS
19
- st.sidebar.title("USER GROUPS")
20
- backend = st.sidebar.selectbox(
21
- "Select User-Group ", USER_GROUPS, index=index_tmp
22
- )
23
-
24
- st.session_state['user_group'] = backend
25
-
26
- st.title("Decision Exploration Panel for OCT Image Analysis")
27
- st.write(
28
- """
29
- This panel provides provides both local and global explanations.
30
- """)
31
-
32
- list_test = """<ul>
33
- <li>Global Explanations: this tab illustrates both representative samples and task-specific borderline samples in the training data from each category in the classification task. These samples enable users
34
- to understand which inputs contribute to the model’s decisions. On the other
35
- hand, borderline cases can be used to highlight potential failure cases. Also, one can see a manifold visualization
36
- of both representative and borderline samples here.</li>
37
- <li>Instance Level Explanations: this panel is intended for model sensitivity analysis, decision correction, and decision highlighting using both local expla-
38
- nation methods and presenting samples similar to the target sample from the
39
- representative samples of the training set. [GradCAM](https://arxiv.org/abs/1610.02391) method is used as a post-hoc explanation technique to highlight aregion of interest.</li>
40
- </ul>"""
41
- st.markdown(list_test, unsafe_allow_html=True)
42
-
43
- # if backend == "Developer":
44
- # get_product_dev_page_layout()
45
- if backend == "Manager":
46
- get_product_dev_page_layout(user_type ="Manager")
47
- else:
48
- get_product_dev_page_layout()