Spaces:
Running
Running
# Read | |
import streamlit as st | |
import sys,os | |
sys.path.append(f'{os.getcwd()}/utils') | |
from utils.data_users import get_product_dev_page_layout,get_product_manager_page_layout,get_product_practitioner_page_layout | |
print(os.getcwd()) | |
# st.write(st.session_state.user_group) | |
USER_GROUPS = ["Developer", "Manager", "Practitioner"] | |
st.set_page_config(layout="wide") | |
if 'user_group' not in st.session_state: | |
index_tmp = 0 | |
else: | |
index_tmp = USER_GROUPS.index(st.session_state['user_group']) | |
#Sidebar for USER GROUPS | |
st.sidebar.title("USER GROUPS") | |
backend = st.sidebar.selectbox( | |
"Select User-Group ", USER_GROUPS, index=index_tmp | |
) | |
st.session_state['user_group'] = backend | |
# # with st.sidebar: | |
# st.sidebar.title("🎈Explore Data Panel") | |
st.title("Data Panel for OCT Image Analysis") | |
st.write( | |
""" | |
## | |
To gain a comprehensive understanding of the AI system, examining the data has a crucial role. The Data Panel adopts a data-centric approach, providing detailed information about the following aspects of the data: | |
""") | |
list_test = """<ul> | |
<li>Data Source Information contains information related to the modality, format, domain, ethical considerations, including licensing and data version. </li> | |
<li>Exploratory Data Stats presents exploratory data analysis information covering train/validation/test data division, summary statistics, and sample visualization from each category. </li> | |
<li>Data Onboarding provides information about the data pre-processing and post-processing steps applied to the dataset before training, as well as any data augmentations that were used.</li> | |
</ul>""" | |
st.markdown(list_test, unsafe_allow_html=True) | |
if backend == "Developer": | |
get_product_dev_page_layout() | |
if backend == "Manager": | |
get_product_manager_page_layout() | |
if backend == "Practitioner": | |
get_product_practitioner_page_layout() | |