Spaces:
Sleeping
Sleeping
File size: 11,714 Bytes
191195c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import matplotlib.pyplot as plt
import numpy as np
import cv2
import math
import itertools
from sklearn.metrics import confusion_matrix, balanced_accuracy_score, precision_score, recall_score
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import LinearLocator
def plot_batch(ds, fn, max_samples=9, figscale:int=2):
""" Plot batch samples from a dataset and save to fn """
if hasattr(ds,'element_spec'): # ad-hoc test to assess if ds is tf.dataset or not...
# draw a batch from tf.data dataset
images, labels = next(iter(ds))
images = images.numpy()
labels = labels.numpy()
else:
# draw a batch from ImageDataGenerator-based dataset
images, labels = ds.next()
# images, labels = ds.take(1)
# limit the number of shown images
n_samples = min(len(images), max_samples)
assert n_samples > 0
root_n = int(math.ceil(math.sqrt(n_samples)))
f, axs = plt.subplots(root_n, root_n, figsize=(root_n*figscale, root_n*figscale))
if root_n > 1:
axs = axs.flat
# find denormalization parameters
min_image_val = min([np.array(img).min() for img in images])
max_image_val = max([np.array(img).max() for img in images])
for i in range(n_samples):
img = _denorm(images[i], min_image_val, max_image_val)
ax = axs[i] if root_n > 1 else axs
ax.imshow(img)
ax.set_title(labels[i])
ax.set_axis_off()
# hide rest of the axes
for j in range(i, root_n*root_n):
axs[j].set_axis_off()
plt.savefig(fn, transparent=False)
plt.close()
def plot_batch_preds(
images,
labels,
preds,
fn,
gradcams=None,
title="",
max_samples=9,
figscale:int=2
):
"""
Plot batch samples with preds and labels
Arguments:
images (list): images from dataset batch
labels (list): labels from dataset batch
preds (list): predictions for items
fn (str): filepath to save figure to
gradcams (grid): gradcam grid (optional)
title (str): plot title
max_samples (int): max number of samples to plot
figscale (int): figure scaling factor. 2=regular, 3=large, 4=larger, etc.
"""
# limit the number of shown images
n_samples = min(len(images), max_samples)
assert n_samples > 0
root_n = int(math.ceil(math.sqrt(n_samples)))
# leave some space vertically for the labels
fig, axs = plt.subplots(root_n, root_n, figsize=(root_n*figscale, (1 + root_n)*figscale))
if root_n > 1:
axs = axs.flat
fig.suptitle(title,fontsize=20)
# find denormalization parameters
min_image_val = min([np.array(img).min() for img in images])
max_image_val = max([np.array(img).max() for img in images])
# unpack concatenated gradcam grid
if gradcams is None:
gradcam_list = [None for _ in range(n_samples)]
else:
gradcam_list = []
rolling_x = 0; rolling_y = 0
H,W = images[0].shape[:2]
orig_h, orig_w = gradcams.shape[:2]
while rolling_y < orig_h:
while rolling_x < orig_w:
gradcam_list.append(gradcams[rolling_y:rolling_y+H, rolling_x:rolling_x+W])
rolling_x += W
rolling_x = 0
rolling_y += H
for i in range(n_samples):
img = _denorm(images[i], min_image_val, max_image_val)
ax = axs[i] if root_n > 1 else axs
# plot a single channel of the image
ax.imshow(img[:,:,0], cmap='gray')
# overlay gradcam activations
if gradcam_list[i] is not None:
H,W = img.shape[:2]
ax.imshow(gradcam_list[i], alpha=0.5, extent=(0,H,W,0), interpolation='bilinear')
ax.set_title(f'GT:{labels[i]}\nPred:{preds[i]}')
ax.set_axis_off()
# hide rest of the axes
for j in range(i, root_n*root_n):
axs[j].set_axis_off()
plt.savefig(fn, transparent=False)
plt.close()
def _denorm(img, min_image_val, max_image_val):
""" Denormalize image by a min and max value """
if min_image_val < 0:
if max_image_val > 1: # [-127,127]
img = (img + 127) / 255.
else: # [-1,1]
img = (img + 1.) / 2.
elif max_image_val > 1: # no scaling
img /= 255.
else: # [0,1]
pass
return np.clip(img, 0,1)
def plot_history(history, fn, figscale=5):
metric_keys = history.history.keys()
# metric keys contain val_ prefixes for validation set, we want to plot these in the same graph with train
train_keys = [key for key in metric_keys if 'val_' not in key]
fig, axs = plt.subplots(len(train_keys), 1, figsize=(figscale, figscale*len(train_keys)))
for i, train_key in enumerate(train_keys):
val_key = 'val_' + train_key
assert val_key in metric_keys
train_metric = history.history[train_key]
val_metric = history.history[val_key]
ax = axs[i] if len(train_keys) > 1 else axs
ax.plot(train_metric, label=f'Training {train_key}')
ax.plot(val_metric, label=f'Validation {train_key}')
ax.legend()
ax.set_ylabel(f'{train_key}')
ax.set_title(f'Training and Validation {train_key}')
plt.savefig(fn, transparent=False)
plt.close()
def plot_confusion_matrix(trues,
preds,
target_names,
title='Confusion matrix',
cmap=None,
normalize=True,
figsize=(10, 10)):
"""
given a sklearn confusion matrix (cm), make a nice plot
Arguments
---------
trues: Ground truth array
preds: Predicted array
target_names: given classification classes such as [0, 1, 2]
the class names, for example: ['high', 'medium', 'low']
title: the text to display at the top of the matrix
cmap: the gradient of the values displayed from matplotlib.pyplot.cm
see http://matplotlib.org/examples/color/colormaps_reference.html
plt.get_cmap('jet') or plt.cm.Blues
normalize: If False, plot the raw numbers
If True, plot the proportions
figsize: tuple of matplotlib figure size
"""
cm = confusion_matrix(trues, preds)
accuracy = np.trace(cm) / np.sum(cm).astype('float')
balanced_acc = balanced_accuracy_score(trues, preds)
misclass = 1 - accuracy
# calculate precision and recall for each class
class_scores = '\n\n'
for i, cl in enumerate(target_names):
cl_trues = np.where(np.array(trues) == i, 1, 0)
cl_preds = np.where(np.array(preds) == i, 1, 0)
precision = precision_score(cl_trues, cl_preds)
recall = recall_score(cl_trues, cl_preds)
class_scores += cl + ' precision {:.3f}, recall {:.3f}'.format(precision, recall) + '\n'
if cmap is None:
cmap = plt.get_cmap('Blues')
plt.figure(figsize=figsize)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title + class_scores)
plt.colorbar()
if target_names is not None:
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 1.5 if normalize else cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize:
plt.text(j, i, "{:0.4f}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}; balanced accuracy={:0.4f}'.format(accuracy, misclass, balanced_acc))
def plot_surface_v1(heat_map):
# create the x and y coordinate arrays (here we just use pixel indices)
heat_gray = cv2.cvtColor(heat_map, cv2.COLOR_BGR2GRAY)
lena = heat_gray
xx, yy = np.mgrid[0:lena.shape[0], 0:lena.shape[1]]
# create the figure
fig = plt.figure()
ax = fig.gca(projection='3d')
# ax2 = fig.add_subplot(1,2,2,projection='3d')
surf = ax.plot_surface(xx, yy, lena ,rstride=1, cstride=1, cmap=plt.cm.jet,
linewidth=0)
# ax.invert_zaxis()
# ax.view_init(20,60)
ax.view_init(30,60)
fig.colorbar(surf, shrink=0.5, aspect=5)
# show it
plt.show()
def plot_surface(fig,heat_map,cnt):
# create the x and y coordinate arrays (here we just use pixel indices)
heat_gray = cv2.cvtColor(heat_map, cv2.COLOR_BGR2GRAY)
lena = heat_gray
# lena[:60,100:] = heat_gray[:60,:80]
xx, yy = np.mgrid[0:lena.shape[0], 0:lena.shape[1]]
# create the figure
# fig = plt.figure()
# ax = fig.gca(projection='3d')
ax = fig.add_subplot(6,5,cnt,projection='3d')
surf = ax.plot_surface(xx, yy, lena ,rstride=1, cstride=1, cmap=plt.cm.jet,
linewidth=0)
# ax.invert_zaxis()
ax.view_init(30,60)
fig.colorbar(surf, shrink=0.5, aspect=5)
def visualize(anchor, positive, negative):
"""Visualize a few triplets from the supplied batches."""
def show(ax, image):
ax.imshow(image)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
fig = plt.figure(figsize=(9, 9))
axs = fig.subplots(3, 3)
for i in range(3):
show(axs[i, 0], anchor[i])
show(axs[i, 1], positive[i])
show(axs[i, 2], negative[i])
def draw_cv2_bbox(img,bboxes,CLASSES,scores=None):
LABELS = ["Background","Bed","Chair","Wheelchair"]
COLORS = [(0,0,0),(255, 0, 0),(255, 128, 0),(0,255,00)]
font = cv2.FONT_HERSHEY_SIMPLEX
fontScale = 0.5
thickness = 1
# CLASSES = CLASSES
# boxes = request_response['boxes']
# masks = np.asarray(request_response['masks'])
# print(bboxes)
for i, box in enumerate(bboxes):
class_id = CLASSES[i]
class_text = LABELS[class_id]
# pts = results['detection_boxes'][0][i3]
xmin = int(round(box[0]))
ymin = int(round(box[1]))
xmax = int(round(box[2]))
ymax = int(round(box[3]))
# print(xmin,ymin,xmax,ymax)
color = COLORS[class_id]
img = cv2.rectangle(img,(xmin,ymin),(xmax,ymax),color,1)
if not scores:
score = scores[i]
tmp_txt = f'{score:.3f}'
img = cv2.putText(img,tmp_txt, (xmin,ymin+5), font, fontScale, color, thickness, cv2.LINE_AA, False)
def draw_bbox(img,bbox, color=(255,0,00)):
# pts = results['detection_boxes'][0][i3]
xmin = bbox[0]
ymin = bbox[1]
xmax = bbox[2]
ymax = bbox[3]
img = cv2.rectangle(img,(xmin,ymin),(xmax,ymax),color,1)
return img
def consctruct_bbox(xc,yc,width=40,height=30):
# tmp_ar = 30
xmin = xc - width+10
xmax = xc + width+10
ymin = yc - height
ymax = yc + height
return [xmin,ymin,xmax,ymax]
# def draw_bbox(img,bbox, color=(255,0,00)):
# # pts = results['detection_boxes'][0][i3]
# xmin = bbox[0]
# ymin = bbox[1]
# xmax = bbox[2]
# ymax = bbox[3]
# img = cv2.rectangle(img,(xmin,ymin),(xmax,ymax),color,1)
# return img |