File size: 2,655 Bytes
191195c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9167246
 
 
191195c
9167246
 
191195c
9167246
 
 
 
 
 
 
 
 
 
 
191195c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import streamlit as st 
import os  
ROOT_FIG_DIR = f'{os.getcwd()}/figures/'

def get_product_dev_page_layout():
    # row6_1, row6_2, = st.columns((1,1))
    row6_1, row6_2,row6_3 = st.tabs(["Evaluation Metrics", "Performance Evaluation", "Issues and Limitations"])

    with row6_1:
        # st.write("**Performance Metrics**")
        st.subheader('Performance Metrics')
        st.write('Following metrics are used for evaluation:')
        st.image(f'{ROOT_FIG_DIR}/evaluation_template.png')
        list_test = """<ul>
                        <li><strong>Accuracy: </strong>it is a ratio of correctly predicted observation to the total observations..</li>
                    </ul>"""
        st.markdown(list_test, unsafe_allow_html=True)
        # st.latex(r''' Accuracy=\frac{TP + TN}{TP+TN+FP+FN}''')
        list_test = """<ul>
                        <li><strong>Precision: </strong>It is the ratio of correctly predicted positive observations to the total predicted positive observations</li>
                    </ul>"""
        st.markdown(list_test, unsafe_allow_html=True)
        # st.latex(r''' Precision=\frac{TP}{TP+FP}''')
        list_test = """<ul>
                        <li><strong>Recall: </strong>It is the ratio of correctly predicted positive observations to the all observations in actual class.</li>
                    </ul>"""
        st.markdown(list_test, unsafe_allow_html=True)
        # st.latex(r''' Recall=\frac{TP}{TP+FN}''')
        # with st.expander('Test Set Confusion Matrix'):
        #     # st.caption('Test Set Results:')
        #     st.image('./figures/test_confmat_20210404.png')

    with row6_2:
        # st.write("**Prediction Samples**")
        # with st.expander('Test Set Confusion Matrix'):
        #     # st.caption('Test Set Results:')
        st.subheader('Test Set Confusion Matrix')
        st.image(f'{ROOT_FIG_DIR}/test_confmat_20210404.png')
        # st.subheader('Prediction Samples')
        # st.caption('Correctly Classified sample predictions:')
        # st.image(f'{ROOT_FIG_DIR}/pred_stats.png')

        # st.caption('Miss Classified sample predictions:')
        # st.image(f'{ROOT_FIG_DIR}/pred_stats.png')

        # st.subheader("Class-wise Prediction Distributions")
        # st.image(f'{ROOT_FIG_DIR}/training_prob_stats.png')
    
    with row6_3:
        st.write("Weencountered classimbalance issue and here is the miclassified samples...")

        st.caption('Miss Classified CNV Samples:')
        st.image(f'{ROOT_FIG_DIR}/cnv_missclass.png')

        st.caption('Miss Classified NORMAL Samples:')
        st.image(f'{ROOT_FIG_DIR}/normal_missclass.png')