Spaces:
Sleeping
Sleeping
File size: 15,624 Bytes
ef2e3e8 9167246 ef2e3e8 9167246 ef2e3e8 9167246 ef2e3e8 9167246 ef2e3e8 9167246 ef2e3e8 9167246 ef2e3e8 57ff91b ef2e3e8 57ff91b ef2e3e8 57ff91b ef2e3e8 9167246 ef2e3e8 9167246 ef2e3e8 57ff91b ef2e3e8 9167246 ef2e3e8 57ff91b ef2e3e8 57ff91b ef2e3e8 57ff91b ef2e3e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import os
import sys
import json
import shutil
import urllib.request
from pathlib import Path
import pathlib
import time
import urllib
from ast import literal_eval
import albumentations as A
import tensorflow as tf
import cv2
import numpy as np
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
from PIL import Image
import streamlit as st
import seaborn as sns
sys.path.append(f'{os.getcwd()}/utils')
from utils.eval_users import get_product_dev_page_layout
# print(os.getcwd())
# Hide GPU from visible devices
tf.config.set_visible_devices([], 'GPU')
# Enable GPU memory growth - avoid allocating all memory at start
# gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
# for gpu in gpus:
# tf.config.experimental.set_memory_growth(device=gpu, enable=True)
from utils.control import show_tsne_vis,show_random_samples
from utils.annoy_sampling import load_annoy_tree
from utils.model_utils import load_model
from utils.model_utils import get_feature_vector, get_feature_extractor_model, get_predictions_and_roi
sns.set_style('darkgrid')
plt.rcParams['axes.grid'] = False
# st.set_page_config(layout="wide")
#https://github.com/IliaLarchenko/albumentations-demo/blob/3cb6528a513fe3b35dbb2c2a63cdcfbb9bb2a932/src/utils.py#L149
GRAD_CAM_IMAGE_DIR = f'{os.getcwd()}/data/gradcam_vis_data/'
TEST_CSV_FILE = f'{os.getcwd()}/data/test_set_pred_prop.csv'
annoy_tree_save_path =f'{os.getcwd()}/data/filtered_train_embedding/representative_samples_emb.annoy'
test_emb_path = f'{os.getcwd()}/data/filtered_train_embedding/test_embeddings.npy'
test_emb_id_path =f'{os.getcwd()}/data/filtered_train_embedding/test_ids.npy'
train_emb_id_path =f'{os.getcwd()}/data/filtered_train_embedding/representative_train_ids.npy'
repr_id_path =f'{os.getcwd()}/data/filtered_train_embedding/representative_train_ids.npy'
borderline_id_path =f'{os.getcwd()}/data/filtered_train_embedding/borderline_train_ids.npy'
MODEL_PATH = f'{os.getcwd()}/model/keras_model_0422/'
ROOT_FIG_DIR = f'{os.getcwd()}/figures/'
test_emb = np.load(test_emb_path)
test_ids = np.load(test_emb_id_path)
test_id_list = list(test_ids)
test_labels = [_id.split("\\")[1] for _id in test_id_list]
print(" NUmber of test samples: ",len(test_labels))
test_features = test_emb.reshape(-1,1792)
# train embedding list
train_ids = np.load(train_emb_id_path)
train_id_list = list(train_ids)
train_labels = [_id.split("\\")[1] for _id in train_id_list]
print(" NUmber of training samples: ",len(train_labels))
annoy_tree = load_annoy_tree(test_features.shape[1],annoy_tree_save_path)
def annoy_matching(annoy_f,query_item, query_index, n=10):
return annoy_f.get_nns_by_vector(query_item, n)
def get_img(fn ,thumbnail=False):
img = Image.open(fn)
if thumbnail:
img.thumbnail((150,150))
return img
def open_gray(fn):
img = cv2.cvtColor(cv2.imread(fn), cv2.COLOR_BGR2GRAY)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
img = cv2.resize(img,(224,224))
return img
def plot_n_similar(seed_id,similar_ids, test_path,n=10, scale=5):
# img_list = []
# title_list = ["SEED ID:{0} <br> Label:{1}".format(seed_id,os.path.basename(test_labels[seed_id]))]
# # for indx,row in cnv_cls_df.iterrows():
# img_list.append(open_gray(test_path.replace("F:/","E:/")))
# for i in range(len(similar_ids)):
# print("PATH:",similar_ids[i].replace("F:/","E:/"))
# img_list.append(open_gray(similar_ids[i].replace("F:/","E:/")))
# # ax[i+1].imshow(get_img(similar_ids[i].replace("F:/","E:/")),cmap='gray')
# title = "ID:{0} <br> Distance: {1:.3f} <br> Label:{2}".format(i,0.1223,os.path.basename(similar_ids[i])[:-4])
# title_list.append(title)
# fig = px.imshow(np.array(img_list), facet_col=0, binary_string=True,facet_row_spacing=0.002,facet_col_spacing=0.002)
# # Set facet titles
# for i, sigma in enumerate(title_list):
# fig.layout.annotations[i]['text'] = sigma
# fig.layout.annotations[i]['yshift'] = -40
# # fig.layout.tex
# fig.update_layout(
# margin=dict(
# l=10,
# r=10,
# b=10,
# t=40,
# pad=1
# ),
# )
# fig.update_xaxes(showticklabels=False)
# fig.update_yaxes(showticklabels=False)
# fig.show()
f,ax = plt.subplots(1,n+1,figsize=((n+1)*scale,scale))
# print(os.path.basename(test_labels[seed_id])[:-4])
title = "SEED ID:{0}\nLabel:{1}".format(seed_id,os.path.basename(test_labels[seed_id]))
# print("path:", test_labels[seed_id].replace("F:/","E:/"))
ax[0].imshow(get_img(test_path.replace("F:/","E:/")),cmap='gray')
ax[0].set_title(title,fontsize=12)
for i in range(len(similar_ids)):
# print("PATH:", similar_ids[i])
ax[i+1].imshow(get_img(similar_ids[i].replace("F:/","E:/")),cmap='gray')
title = "ID:{0}\nDistance: {1:.3f}\nLabel:{2}".format(i,0.1223,os.path.basename(similar_ids[i])[:-4])
ax[i+1].set_title(title,fontsize=10)
f.suptitle("Images similar to seed_id {0}".format(seed_id),fontsize=18)
plt.subplots_adjust(top=0.4)
plt.tight_layout()
return f
def load_image(filename,change_url=True):
# if change_url:
# print(filename)
# print(os.path.exists(filename))
img = cv2.imread(filename)
return img
@st.cache(allow_output_mutation=True)
def get_model(model_path):
new_model = tf.keras.models.load_model(model_path)
# keras_model = load_model(model_path)
return new_model
@st.cache(allow_output_mutation=True)
def get_feature_vector_model(model_path):
keras_model = tf.keras.models.load_model(model_path)
feature_extractor = tf.keras.Model(keras_model.inputs,keras_model.layers[-3].output)
return feature_extractor
def load_pd_data_frame(df_csv_path):
return pd.read_csv(df_csv_path)
def get_path_list_from_df(df_data):
return list(df_data['path'])
def get_class_probs_from_df(df_data):
return list(df_data['class_probs'])
def visualize_bar_plot(df_data):
fig = px.bar(df_data, x="probability", y="class", orientation='h')
return fig
# def run_instance_exp(img_path, img_path_list,prob_list,grad_vis_path_list):
# st.subheader('Instance Exploration')
# # st.columns((1,1,1)) with row4_2:
# LABELS = ['CNV', 'DRUSEN', 'DME', 'NORMAL']
# left_column, middle_column, right_column = st.columns((1,1,1))
# display_image = load_image(img_path)
# # fig = px.imshow(display_image)
# # left_column.plotly_chart(fig, use_container_width=True)
# left_column.image(cv2.resize(display_image, (180,180)),caption = "Selected Input")
# # get class probabilities
# indx = img_path_list.index(img_path)
# print(img_path)
# prb_tmp = prob_list[indx]
# print(f"{prb_tmp[1:-1]}")
# clss_probs = literal_eval('"'+prb_tmp[1:-1]+'"')
# print(clss_probs[1:-1].split(' '))
# prob_cls = [float(p) for p in clss_probs[1:-1].split(' ')]
# tmp_df = pd.DataFrame.from_dict({'class':LABELS,'probability':prob_cls})
# print(tmp_df.head())
# fig = plt.figure(figsize=(15, 13))
# sns.barplot(x='probability', y='class', data=tmp_df)
# middle_column.pyplot(fig)
# # st.caption('Predictions')
# tmp_grad_img = GRAD_CAM_IMAGE_DIR + img_path.split("\\")[-2] +'/'+img_path.split("\\") [-1]
# display_image = load_image(tmp_grad_img,replace=False)
# # left_column.plotly_chart(fig, use_container_width=True)
# right_column.image(display_image,caption = "ROI")
# # seed_id = 900
# seed_id = test_id_list.index(img_path)
# query_item = test_features[seed_id]
# print(query_item.shape)
# closest_idxs = annoy_matching(annoy_tree,query_item, seed_id, 10)
# closest_fns = [train_ids[close_i] for close_i in closest_idxs]
# st.subheader('Top-10 Similar Samples from Gallery Set')
# st.plotly_chart(plot_n_similar(seed_id,closest_fns, img_path,n=10, scale=4), use_container_width=True)
# # st.pyplot(plot_n_similar(seed_id,closest_fns, img_path,n=10, scale=4))
def run_instance_exp_keras_model(img_path, new_model, feature_extractor_model):
st.subheader('Instance Exploration')
# st.columns((1,1,1)) with row4_2:
LABELS = ['CNV', 'DRUSEN', 'DME', 'NORMAL']
left_column, middle_column, right_column = st.columns((1,1,1))
print(img_path)
org_img_path = img_path
img_path = f'{os.getcwd()}/data/oct2017/test/' + img_path.split("\\")[-2] +'/'+img_path.split("\\") [-1]
# img_path.replace("F:/XAI/data/OCT2017/","/home/hodor/dev/Learning/XAI/streamlit_demo/multipage-app/data/xai_framework_data/")
display_image = load_image(img_path)
# fig = px.imshow(display_image)
# left_column.plotly_chart(fig, use_container_width=True)
left_column.image(display_image,caption = "Selected Input")
# left_column.image(cv2.resize(display_image, (180,180)),caption = "Selected Input")
roi_img, probs = get_predictions_and_roi(img_path, new_model)
## probs
# print(np.asarray(probs))
# print(probs.shape)
prob_cls =np.asarray(probs)[0]
# print(prob_cls)
tmp_df = pd.DataFrame.from_dict({'class':LABELS,'probability':prob_cls})
fig = plt.figure(figsize=(8, 9))
sns.barplot(x='probability', y='class', data=tmp_df)
middle_column.pyplot(fig)
# middle_column.write("Probabilities")
# grad img
right_column.image(roi_img, caption = "Decision ROI")
# right_column.image(cv2.resize(roi_img, display_image.shape[:2]),caption = "GradCAM ROI")
# seed_id = 900
seed_id = test_id_list.index(org_img_path)
query_item = get_feature_vector(img_path,feature_extractor_model)
query_item = query_item.reshape(-1,1792)
# print(query_item.shape)
closest_idxs = annoy_matching(annoy_tree,query_item[0,:], seed_id, 10)
closest_fns = [train_ids[close_i] for close_i in closest_idxs]
closest_fns_tmp = [f'{os.getcwd()}/data/oct2017/train/' + each_fn.split("\\")[-2] +'/'+each_fn.split("\\") [-1]
for each_fn in closest_fns]
# print(closest_fns)
st.subheader('Top-10 Similar Samples from Gallery Set')
# st.plotly_chart(plot_n_similar(seed_id,closest_fns, img_path,n=10, scale=4), use_container_width=True)
st.pyplot(plot_n_similar(seed_id,closest_fns_tmp, img_path,n=10,scale=4))
with st.expander('Correct Decision'):
st.info("Correct th decision if it is not valid. This sample will be added to next training bucket.")
tmp_col1, tmp_col2 = st.columns(2)
with tmp_col1:
label_correect = st.radio(
"Choose label visibility π",
["CNV", "DME", "NORMAL","DRUSEN"],
horizontal=True)
with tmp_col2:
tmp_btn = st.button('ADD TO TRAINING BUCKET')
if tmp_btn:
st.warning("Sample added to training set..")
def main():
new_model = get_model(MODEL_PATH)
feature_extractor_model = get_feature_vector_model(MODEL_PATH)
row4_1, row4_2 = st.tabs(["Global Level Explanations", "Instance Level Explanations"])
with row4_1:
borderline_cases = np.load(borderline_id_path)
representative_cases = np.load(repr_id_path)
borderline_id_list = list(borderline_cases)
# print(borderline_id_list)
borderline_id_list = [f'{os.getcwd()}/data/oct2017/train/' + each_fn.split("\\")[-2] +'/'+each_fn.split("\\") [-1]
for each_fn in borderline_id_list]
representative_id_list = list(representative_cases)
representative_id_list = [f'{os.getcwd()}/data/oct2017/train/' + each_fn.split("\\")[-2] +'/'+each_fn.split("\\") [-1]
for each_fn in representative_id_list]
# st.info('GLOABAL EXPLANATION!! ')
option = st.selectbox('Please select to explore Representative or Borderline Samples', ["Representative Samples","Borderline Cases"])
if option:
clss = st.selectbox('Select a category(class)', ["CNV","DME", "NORMAL", "DRUSEN"])
side_1, side_2 = st.columns(2)
with side_1:
check_emb = st.checkbox('Embdedding Space Visuzalization')
with side_2:
check_samp = st.checkbox('Random Sample Visuzalization')
if check_emb and check_samp:
st.write("Emb and vis")
if option.startswith("Rep"):
filter_lst = list(filter(lambda k: clss in k, representative_id_list))
show_random_samples(filter_lst,clss)
show_tsne_vis(f"{ROOT_FIG_DIR}/tsne_representative.png", title="Representative")
else:
filter_lst = list(filter(lambda k: clss in k, borderline_id_list))
show_random_samples(filter_lst,clss)
show_tsne_vis(f"{ROOT_FIG_DIR}/tsne_borderline.png", title="Borderline")
elif check_emb:
st.write("embedding vis")
if option.startswith("Rep"):
show_tsne_vis(f"{ROOT_FIG_DIR}/tsne_representative.png", title="Representative")
else:
show_tsne_vis(f"{ROOT_FIG_DIR}/tsne_borderline.png", title="Borderline")
elif check_samp:
st.write("rand vis")
if option.startswith("Rep"):
filter_lst = list(filter(lambda k: clss in k, representative_id_list))
show_random_samples(filter_lst,clss)
else:
filter_lst = list(filter(lambda k: clss in k, borderline_id_list))
show_random_samples(filter_lst,clss)
with row4_2:
DF_TEST_PROP = load_pd_data_frame(TEST_CSV_FILE)
IMG_PATH_LISTS = get_path_list_from_df(DF_TEST_PROP)
IMG_CLSS_PROBS_LIST = get_class_probs_from_df(DF_TEST_PROP)
grad_vis_path_list = None
row2_col1, row2_col2 = st.columns(2)
with row2_col1:
option = st.selectbox('Please select a sample image, then click Explain Me button', IMG_PATH_LISTS)
with row2_col2:
st.info("Press the button")
pressed = st.button('Explain ME')
if pressed:
st.empty()
st.write('Please wait for the magic to happen! This may take up to a minute.')
run_instance_exp_keras_model(option, new_model,feature_extractor_model)
# with st.expander('Correct Decision'):
# st.info("Correct th decision if it is not valid. This sample will be added to next training bucket.")
# tmp_col1, tmp_col2 = st.columns(2)
# with tmp_col1:
# label_correect = st.radio(
# "Choose label visibility π",
# ["CNV", "DME", "NORMAL","DRUSEN"],
# key="visibility",
# horizontal=True)
# with tmp_col2:
# tmp_btn = st.button('ADD TO TRAINING BUCKET')
# if tmp_btn:
# st.warning("Sample added to training set..")
# # new_model = load_model(MODEL_PATH)
# option = st.sidebar.selectbox('Please select a sample image, then click Explain Me button', IMG_PATH_LISTS)
# pressed = st.sidebar.button('Explain ME')
# main()
# expander_faq = st.expander("More About Our Project")
# expander_faq.write("Hi there! If you have any questions about our project, or simply want to check out the source code, please visit our github repo: https://github.com/kaplansinan/MLOPS")
def get_product_dev_page_layout():
return main() |