Spaces:
Sleeping
Sleeping
File size: 10,796 Bytes
191195c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import numpy as np
import pandas as pd
import os
import glob
import random
import matplotlib.pyplot as plt
import cv2
import plotly.express as px
from annoy import AnnoyIndex
from PIL import Image
from tqdm import tqdm
# https://github.com/erikbern/ann-presentation/blob/master/cifar.py
# https://www.slideshare.net/erikbern/approximate-nearest-neighbor-methods-and-vector-models-nyc-ml-meetup
# https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html
# t-SNE space
def get_top_n_dissimilar_samples_path(embeddings,embeddings_id_list,test_size_ratio =0.1, annoy_path=None):
if annoy_path is None:
build_annoy_tree(embeddings, embeddings_id_list,annoy_path, n_trees=50)
annoy_tree = load_annoy_tree(embeddings.shape[1],annoy_path)
dist_map = create_distance_map(annoy_tree,embeddings_id_list)
sorted_isolation_values, sorted_indices = get_isolated_elements_from_distance_map(dist_map,embeddings_id_list)
_, test_paths = splitListByIsolationValues(embeddings_id_list, sorted_indices, test_size_ratio)
return test_paths
def build_annoy_tree(embeddings, embeddings_id_list,save_filename, n_trees=50):
tree = AnnoyIndex(embeddings.shape[1], 'euclidean')
ntree = n_trees
# add all items
for path, vector in zip(list(range(len(embeddings_id_list))),embeddings):
tree.add_item(path, vector)
# build tree
tree.build(ntree)
tree.save(save_filename)
def load_annoy_tree(embeddings_dim,annoy_fn):
a = AnnoyIndex(embeddings_dim, 'euclidean')
a.load(annoy_fn)
return a
def create_distance_map(annoy_tree,embeddings_id_list):
# generate distance map
distance_map = np.zeros((len(embeddings_id_list),len(embeddings_id_list)),np.float32)
for i in tqdm(range(len(embeddings_id_list))):
for j in range(len(embeddings_id_list)):
distance_map[i,j] = annoy_tree.get_distance(i,j)
return distance_map
def get_isolated_elements_from_distance_map(distance_map,embeddings_id_list):
# Now, sample n percent of the ones with maximum distances to closest neighbors. Isolated ones.
test_samples = np.where(distance_map == 0, 500, distance_map)
isolation_values = np.min(test_samples,1)
# get results in descending order
sorted_isolation_values, sorted_indices = zip(*sorted(zip(isolation_values, list(range(len(embeddings_id_list)))),reverse=True))
return sorted_isolation_values, sorted_indices
def splitListByIsolationValues(lst, sorted_indices, test_part=0.1):
# TEST_SIZE = 0.05 # Percentage of test data from all
# train_paths, test_paths = splitListByIsolationValues(train_id_list, sorted_indices, TEST_SIZE)
# print(len(train_paths))
# print(len(test_paths))
n_test = int(len(lst)*test_part)
indices_test = sorted_indices[:n_test]
indices_train = sorted_indices[n_test:]
lst_train = [lst[ind] for ind in indices_train]
lst_test = [lst[ind] for ind in indices_test]
return lst_train, lst_test
# tree = AnnoyIndex(train_tsne_2d.shape[1], 'euclidean')
# ntree = 50
# # add all items
# for path, vector in zip(list(range(len(train_id_list))),train_tsne_2d):
# tree.add_item(path, vector)
# # build tree
# _ = tree.build(ntree)
# # generate distance map
# distance_map = np.zeros((len(train_id_list),len(train_id_list)),np.float32)
# for i in tqdm(range(len(train_id_list))):
# for j in range(len(train_id_list)):
# distance_map[i,j] = tree.get_distance(i,j)
# # Now, sample n percent of the ones with maximum distances to closest neighbors. Isolated ones.
# test_samples = np.where(distance_map == 0, 500, distance_map)
# isolation_values = np.min(test_samples,1)
# # get results in descending order
# sorted_isolation_values, sorted_indices = zip(*sorted(zip(isolation_values, list(range(len(train_id_list)))),reverse=True))
# print(sorted_isolation_values[:5],sorted_indices[:5])
# #Plot some of the images and compare them to rest of the set to see if there are any similar samples.
# for isolated_id in sorted_indices[:10]:
# plot_n_similar(isolated_id,4)
# plt.show()
# TEST_SIZE = 0.05 # Percentage of test data from all
# train_paths, test_paths = splitListByIsolationValues(train_id_list, sorted_indices, TEST_SIZE)
# print(len(train_paths))
# print(len(test_paths))
# def build(fn, f, fun): # lol @ parameters :)
# a = annoy.AnnoyIndex(f, 'euclidean')
# i = 0
# for pixels, label in read_cifar():
# a.add_item(i, fun(pixels))
# i += 1
# if i % 1000 == 0:
# print i, '...'
# a.build(100)
# a.save(fn)
# def build_annoy_tree():
# annoy_fn = 'mnist.annoy'
# data_fn = 'mnist.pkl.gz'
# if not os.path.exists(annoy_fn):
# if not os.path.exists(data_fn):
# print 'downloading'
# urlretrieve('http://deeplearning.net/data/mnist/mnist.pkl.gz', data_fn)
# a = annoy.AnnoyIndex(784, 'euclidean')
# for i, pic in util.get_vectors(data_fn):
# a.add_item(i, pic)
# print 'building'
# a.build(10)
# a.save(annoy_fn)
def scatter_thumbnails_train_test(data, image_paths, train_labels, test_paths, zoom=0.3,
colors=None, xlabel='PCA dimension 1',
ylabel='PCA dimension 2'):
# assert len(data) == len(image_paths)
# reduce embedding dimensions to 2
# x = PCA(n_components=2).fit_transform(data) #if len(data[0]) > 2 else data
x = data
tmp_colors = ['y', 'g', 'b', 'c']
f = plt.figure(figsize=(22, 15))
ax = plt.subplot(aspect='equal')
np_label = np.array(train_labels)
cls_categories = ['CNV', 'DRUSEN', 'DME', 'NORMAL']
for cls,clr in zip(cls_categories,tmp_colors):
indices = np_label==cls
ax.scatter(data[indices,0],data[indices,1], c=clr, label = cls ,alpha=0.5, s=4)
_ = ax.axis('tight')
ax.set_xlabel(xlabel, fontsize=14)
ax.set_ylabel(ylabel, fontsize=14)
ax.legend(fontsize='large', markerscale=2)
# create a scatter plot.
# f = plt.figure(figsize=(22, 15))
# ax = plt.subplot(aspect='equal')
# sc = ax.scatter(x[:,0], x[:,1], s=4)
# #_ = ax.axis('off')
# _ = ax.axis('tight')
# ax.set_xlabel(xlabel, fontsize=14)
# ax.set_ylabel(ylabel, fontsize=14)
# add thumbnails :)
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
for i in range(len(image_paths)):
isTest = image_paths[i] in test_paths
if isTest:
image = get_img(image_paths[i].replace("F:/","E:/"), thumbnail=True)
if not (len(image.shape))==1:
im = OffsetImage(image, cmap='gray',zoom=zoom if isTest else zoom-0.2)
bboxprops = dict(edgecolor= 'red' if isTest else 'gray')
ab = AnnotationBbox(im, x[i], xycoords='data',
frameon=(bboxprops is not None),
pad=0.0,
bboxprops=bboxprops)
ax.add_artist(ab)
return ax
# _ = scatter_thumbnails_train_test(train_tsne_2d, train_id_list, test_paths,
# zoom=0.2, xlabel="Dimension 1", ylabel="Dimension 2")
# plt.title('2D t-SNE Visualization of Sampled Data (OCT2017 Train) - RGB=Picked')
# plt.show()
def splitListByIsolationValues(lst, sorted_indices, test_part=0.1):
n_test = int(len(lst)*test_part)
indices_test = sorted_indices[:n_test]
indices_train = sorted_indices[n_test:]
lst_train = [lst[ind] for ind in indices_train]
lst_test = [lst[ind] for ind in indices_test]
return lst_train, lst_test
def plot_random_samples(paths, n=5):
f, ax = plt.subplots(1,5,figsize=(20,5))
for i in range(n):
rand_index = random.randint(0,len(paths)-1)
ax[i].imshow(plt.imread(paths[rand_index]))
def get_img(fn ,thumbnail=False):
img = Image.open(fn)
if thumbnail:
img.thumbnail((100,100))
#print(img.size)
return np.array(img)[:,:]
def plot_n_similar(annoy_tree,train_id_list,train_labels,seed_id,n, scale=5):
ids, dists = annoy_tree.get_nns_by_item(seed_id, n+1, search_k=-1, include_distances=True)
f,ax = plt.subplots(1,n+1,figsize=((n+1)*scale,scale))
for i,_id in enumerate(ids):
img_id = _id if i != 0 else seed_id
ax[i].imshow(get_img(train_id_list[img_id]),cmap='gray')
title = "ID:{0}\nDistance: {1:.3f}\nLabel:{2}".format(img_id,dists[i],train_labels[img_id]) if i != 0 else "SEED ID:{0}\nLabel:{1}".format(img_id,train_labels[img_id])
ax[i].set_title(title,fontsize=12)
f.suptitle("Images similar to seed_id {0}".format(seed_id),fontsize=18)
plt.subplots_adjust(top=0.97)
# plot_n_similar(5)
# def match_gallery_2_query(save_dir):
# gallery_emb = np.load(os.path.join(save_dir, 'gallery_embedding.npy'))
# query_emb = np.load(os.path.join(save_dir, 'query_embedding.npy'))
# gallery_ids = np.load(os.path.join(save_dir, 'gallery_ids.npy'))
# query_ids = np.load(os.path.join(save_dir, 'query_ids.npy'))
# query_results = []
# get_closest = None
# if matching_method == 'annoy':
# annoy_metric = 'hamming' if gallery_emb.dtype == np.bool else 'angular'
# annoy_f = AnnoyIndex(gallery_emb.shape[1], annoy_metric)
# for i in range(gallery_emb.shape[0]):
# annoy_f.add_item(i, gallery_emb[i])
# annoy_f.build(10) # number of trees
# def annoy_matching(query_item, query_index, n=10):
# return annoy_f.get_nns_by_vector(query_item, n)
# get_closest = annoy_matching
# elif matching_method == 'knn':
# #distances = distance.cdist(query_emb, gallery_emb, 'cosine')
# #sorted_dist = np.argsort(distances, axis=1)
# def knn_matching(query_item, query_index, n=10):
# distances = distance.cdist((query_emb[query_index]).reshape(1,-1), gallery_emb, 'cosine')
# sorted_dist = np.argsort(distances, axis=1)
# return sorted_dist[0,:n]
# get_closest = knn_matching
# else:
# raise Exception(f'{FLAGS.matching_method} not implemented in matching')
# for i, query_item in tqdm(enumerate(query_emb),'Finding matches...'):
# closest_idxs = get_closest(query_item, i, 10)
# closest_fns = [gallery_ids[close_i] for close_i in closest_idxs]
# beginning = f'{query_ids[i]},' + '{'
# line = ','.join(closest_fns)
# end = '}'
# query_results.append(beginning + line + end)
# sub_fn = os.path.join(save_dir, 'submission.csv')
# with open(sub_fn, 'w') as f:
# f.writelines("%s\n" % l for l in query_results)
# plot_submission(sub_fn, FLAGS.testdata_dir, save_dir) |