File size: 10,796 Bytes
191195c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import numpy as np
import pandas as pd
import os
import glob
import random
import matplotlib.pyplot as plt
import cv2
import plotly.express as px
from annoy import AnnoyIndex
from PIL import Image
from tqdm import tqdm

# https://github.com/erikbern/ann-presentation/blob/master/cifar.py
# https://www.slideshare.net/erikbern/approximate-nearest-neighbor-methods-and-vector-models-nyc-ml-meetup

# https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html
# t-SNE space

def get_top_n_dissimilar_samples_path(embeddings,embeddings_id_list,test_size_ratio =0.1, annoy_path=None):
    if annoy_path is None:
        build_annoy_tree(embeddings, embeddings_id_list,annoy_path, n_trees=50)

    annoy_tree = load_annoy_tree(embeddings.shape[1],annoy_path)
    dist_map = create_distance_map(annoy_tree,embeddings_id_list)
    sorted_isolation_values, sorted_indices = get_isolated_elements_from_distance_map(dist_map,embeddings_id_list)
    _, test_paths = splitListByIsolationValues(embeddings_id_list, sorted_indices, test_size_ratio)
    return test_paths

def build_annoy_tree(embeddings, embeddings_id_list,save_filename, n_trees=50):
    tree = AnnoyIndex(embeddings.shape[1], 'euclidean')
    ntree = n_trees
    # add all items
    for path, vector in zip(list(range(len(embeddings_id_list))),embeddings):
        tree.add_item(path, vector)

    # build tree
    tree.build(ntree)
    tree.save(save_filename)

def load_annoy_tree(embeddings_dim,annoy_fn):
    a = AnnoyIndex(embeddings_dim, 'euclidean')
    a.load(annoy_fn)
    return a

def create_distance_map(annoy_tree,embeddings_id_list):
    # generate distance map
    distance_map = np.zeros((len(embeddings_id_list),len(embeddings_id_list)),np.float32)
    for i in tqdm(range(len(embeddings_id_list))):
        for j in range(len(embeddings_id_list)):
            distance_map[i,j] = annoy_tree.get_distance(i,j)
    return distance_map

def get_isolated_elements_from_distance_map(distance_map,embeddings_id_list):
    # Now, sample n percent of the ones with maximum distances to closest neighbors. Isolated ones.
    test_samples = np.where(distance_map == 0, 500, distance_map)

    isolation_values = np.min(test_samples,1)
    # get results in descending order
    sorted_isolation_values, sorted_indices = zip(*sorted(zip(isolation_values, list(range(len(embeddings_id_list)))),reverse=True))

    return sorted_isolation_values, sorted_indices

def splitListByIsolationValues(lst, sorted_indices, test_part=0.1):

    # TEST_SIZE = 0.05 # Percentage of test data from all
    # train_paths, test_paths = splitListByIsolationValues(train_id_list, sorted_indices, TEST_SIZE)
    # print(len(train_paths))
    # print(len(test_paths))
    n_test = int(len(lst)*test_part)
    indices_test = sorted_indices[:n_test]
    indices_train = sorted_indices[n_test:]
    lst_train = [lst[ind] for ind in indices_train]
    lst_test = [lst[ind] for ind in indices_test]
    return lst_train, lst_test


# tree = AnnoyIndex(train_tsne_2d.shape[1], 'euclidean')
# ntree = 50

# # add all items
# for path, vector in zip(list(range(len(train_id_list))),train_tsne_2d):
#     tree.add_item(path, vector)

# # build tree
# _  = tree.build(ntree)


# # generate distance map
# distance_map = np.zeros((len(train_id_list),len(train_id_list)),np.float32)
# for i in tqdm(range(len(train_id_list))):
#     for j in range(len(train_id_list)):
#         distance_map[i,j] = tree.get_distance(i,j)


# # Now, sample n percent of the ones with maximum distances to closest neighbors. Isolated ones.
# test_samples = np.where(distance_map == 0, 500, distance_map)

# isolation_values = np.min(test_samples,1)
# # get results in descending order
# sorted_isolation_values, sorted_indices = zip(*sorted(zip(isolation_values, list(range(len(train_id_list)))),reverse=True))

# print(sorted_isolation_values[:5],sorted_indices[:5])

# #Plot some of the images and compare them to rest of the set to see if there are any similar samples.
# for isolated_id in sorted_indices[:10]:
#     plot_n_similar(isolated_id,4)
#     plt.show()

# TEST_SIZE = 0.05 # Percentage of test data from all
# train_paths, test_paths = splitListByIsolationValues(train_id_list, sorted_indices, TEST_SIZE)
# print(len(train_paths))
# print(len(test_paths))



# def build(fn, f, fun): # lol @ parameters :)
#     a = annoy.AnnoyIndex(f, 'euclidean')
#     i = 0
#     for pixels, label in read_cifar():
#         a.add_item(i, fun(pixels))
#         i += 1
#         if i % 1000 == 0:
#             print i, '...'

#     a.build(100)
#     a.save(fn)

# def build_annoy_tree():
#     annoy_fn = 'mnist.annoy'
#     data_fn = 'mnist.pkl.gz'

#     if not os.path.exists(annoy_fn):
#         if not os.path.exists(data_fn):
#             print 'downloading'
#             urlretrieve('http://deeplearning.net/data/mnist/mnist.pkl.gz', data_fn)

#         a = annoy.AnnoyIndex(784, 'euclidean')
#         for i, pic in util.get_vectors(data_fn):
#             a.add_item(i, pic)

#         print 'building'
#         a.build(10)
#         a.save(annoy_fn)

def scatter_thumbnails_train_test(data, image_paths, train_labels, test_paths, zoom=0.3, 
                       colors=None, xlabel='PCA dimension 1',
                       ylabel='PCA dimension 2'):
    # assert len(data) == len(image_paths)

    # reduce embedding dimensions to 2
    # x = PCA(n_components=2).fit_transform(data) #if len(data[0]) > 2 else data
    x = data
    tmp_colors = ['y', 'g', 'b', 'c']
    f = plt.figure(figsize=(22, 15))
    ax = plt.subplot(aspect='equal')
    np_label = np.array(train_labels)
    cls_categories = ['CNV', 'DRUSEN', 'DME', 'NORMAL']
    for cls,clr in zip(cls_categories,tmp_colors):
        indices = np_label==cls
        ax.scatter(data[indices,0],data[indices,1], c=clr, label = cls ,alpha=0.5, s=4)
    _ = ax.axis('tight')
    ax.set_xlabel(xlabel, fontsize=14)
    ax.set_ylabel(ylabel, fontsize=14)
    ax.legend(fontsize='large', markerscale=2)

    # create a scatter plot.
    # f = plt.figure(figsize=(22, 15))
    # ax = plt.subplot(aspect='equal')
    # sc = ax.scatter(x[:,0], x[:,1], s=4)
    # #_ = ax.axis('off')
    # _ = ax.axis('tight')
    # ax.set_xlabel(xlabel, fontsize=14)
    # ax.set_ylabel(ylabel, fontsize=14)

    # add thumbnails :)
    from matplotlib.offsetbox import OffsetImage, AnnotationBbox
    for i in range(len(image_paths)):
        isTest = image_paths[i] in test_paths
        if isTest:
            image = get_img(image_paths[i].replace("F:/","E:/"), thumbnail=True)
            if not (len(image.shape))==1:
                im = OffsetImage(image, cmap='gray',zoom=zoom if isTest else zoom-0.2)
                bboxprops = dict(edgecolor= 'red' if isTest else 'gray')
                ab = AnnotationBbox(im, x[i], xycoords='data',
                                    frameon=(bboxprops is not None),
                                    pad=0.0,
                                    bboxprops=bboxprops)
                ax.add_artist(ab)
    return ax

# _ = scatter_thumbnails_train_test(train_tsne_2d, train_id_list, test_paths,
#                        zoom=0.2, xlabel="Dimension 1", ylabel="Dimension 2")
# plt.title('2D t-SNE Visualization of Sampled Data (OCT2017 Train) - RGB=Picked')
# plt.show()

def splitListByIsolationValues(lst, sorted_indices, test_part=0.1):
    n_test = int(len(lst)*test_part)
    indices_test = sorted_indices[:n_test]
    indices_train = sorted_indices[n_test:]
    lst_train = [lst[ind] for ind in indices_train]
    lst_test = [lst[ind] for ind in indices_test]
    return lst_train, lst_test

def plot_random_samples(paths, n=5):
    f, ax = plt.subplots(1,5,figsize=(20,5))
    for i in range(n):
        rand_index = random.randint(0,len(paths)-1)
        ax[i].imshow(plt.imread(paths[rand_index]))

def get_img(fn ,thumbnail=False):
    img = Image.open(fn)
    if thumbnail:
        img.thumbnail((100,100))
    #print(img.size)
    return np.array(img)[:,:]


def plot_n_similar(annoy_tree,train_id_list,train_labels,seed_id,n, scale=5):
    ids, dists = annoy_tree.get_nns_by_item(seed_id, n+1, search_k=-1, include_distances=True)
    f,ax = plt.subplots(1,n+1,figsize=((n+1)*scale,scale))
    for i,_id in enumerate(ids):
        img_id = _id if i != 0 else seed_id
        ax[i].imshow(get_img(train_id_list[img_id]),cmap='gray')
        title = "ID:{0}\nDistance: {1:.3f}\nLabel:{2}".format(img_id,dists[i],train_labels[img_id]) if i != 0 else "SEED ID:{0}\nLabel:{1}".format(img_id,train_labels[img_id])
        ax[i].set_title(title,fontsize=12)
    f.suptitle("Images similar to seed_id {0}".format(seed_id),fontsize=18)
    plt.subplots_adjust(top=0.97)

# plot_n_similar(5)

# def match_gallery_2_query(save_dir):
#     gallery_emb = np.load(os.path.join(save_dir, 'gallery_embedding.npy'))
#     query_emb = np.load(os.path.join(save_dir, 'query_embedding.npy'))
#     gallery_ids = np.load(os.path.join(save_dir, 'gallery_ids.npy'))
#     query_ids = np.load(os.path.join(save_dir, 'query_ids.npy'))

#     query_results = []
#     get_closest = None

#     if matching_method == 'annoy':
#         annoy_metric = 'hamming' if gallery_emb.dtype == np.bool else 'angular'
#         annoy_f = AnnoyIndex(gallery_emb.shape[1], annoy_metric)
#         for i in range(gallery_emb.shape[0]):
#             annoy_f.add_item(i, gallery_emb[i])

#         annoy_f.build(10) # number of trees
        
#         def annoy_matching(query_item, query_index, n=10):
#             return annoy_f.get_nns_by_vector(query_item, n)
        
#         get_closest = annoy_matching

#     elif matching_method == 'knn':
#         #distances = distance.cdist(query_emb, gallery_emb, 'cosine')
#         #sorted_dist = np.argsort(distances, axis=1)

#         def knn_matching(query_item, query_index, n=10):
#             distances = distance.cdist((query_emb[query_index]).reshape(1,-1), gallery_emb, 'cosine')
#             sorted_dist = np.argsort(distances, axis=1)
#             return sorted_dist[0,:n]

#         get_closest = knn_matching

#     else:
#         raise Exception(f'{FLAGS.matching_method} not implemented in matching')
#     for i, query_item in tqdm(enumerate(query_emb),'Finding matches...'):
#         closest_idxs = get_closest(query_item, i, 10)
#         closest_fns = [gallery_ids[close_i] for close_i in closest_idxs]
#         beginning = f'{query_ids[i]},' + '{'
#         line = ','.join(closest_fns)
#         end = '}'
#         query_results.append(beginning + line + end)

#     sub_fn = os.path.join(save_dir, 'submission.csv')
#     with open(sub_fn, 'w') as f:
#         f.writelines("%s\n" % l for l in query_results)

#     plot_submission(sub_fn, FLAGS.testdata_dir, save_dir)