hitz02 commited on
Commit
50d3ba1
·
1 Parent(s): 95f9458

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -91
app.py DELETED
@@ -1,91 +0,0 @@
1
- import tensorflow.compat.v1 as tf
2
- import os
3
- import shutil
4
- import csv
5
- import pandas as pd
6
- import numpy as np
7
- import IPython
8
- import streamlit as st
9
- import subprocess
10
- from itertools import islice
11
- import random
12
- from transformers import TapasTokenizer, TapasForQuestionAnswering
13
-
14
- tf.get_logger().setLevel('ERROR')
15
-
16
- model_name = 'google/tapas-base-finetuned-wtq'
17
- model = TapasForQuestionAnswering.from_pretrained(model_name, local_files_only=False)
18
- tokenizer = TapasTokenizer.from_pretrained(model_name)
19
-
20
-
21
- st.set_option('deprecation.showfileUploaderEncoding', False)
22
-
23
- st.title('Query your Table')
24
-
25
- st.header('Upload CSV file')
26
-
27
-
28
- uploaded_file = st.file_uploader("Choose your CSV file",type = 'csv')
29
-
30
- placeholder = st.empty()
31
-
32
- if uploaded_file is not None:
33
- data = pd.read_csv(uploaded_file)
34
- data.replace(',','', regex=True, inplace=True)
35
- if st.checkbox('Want to see the data?'):
36
- placeholder.dataframe(data)
37
-
38
- st.header('Enter your queries')
39
-
40
- input_queries = st.text_input('Type your queries separated by comma(,)',value='')
41
- input_queries = input_queries.split(',')
42
-
43
- colors1 = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)]) for i in range(len(input_queries))]
44
- colors2 = ['background-color:'+str(color)+'; color: black' for color in colors1]
45
-
46
- def styling_specific_cell(x,tags,colors):
47
- df_styler = pd.DataFrame('', index=x.index, columns=x.columns)
48
- for idx,tag in enumerate(tags):
49
- for r,c in tag:
50
- df_styler.iloc[r, c] = colors[idx]
51
- return df_styler
52
-
53
- if st.button('Predict Answers'):
54
- with st.spinner('It will take approx a minute'):
55
- data = data.astype(str)
56
- inputs = tokenizer(table=table, queries=queries, padding='max_length', return_tensors="pt")
57
- outputs = model(**inputs)
58
- predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions( inputs, outputs.logits.detach(), outputs.logits_aggregation.detach())
59
-
60
- id2aggregation = {0: "NONE", 1: "SUM", 2: "AVERAGE", 3:"COUNT"}
61
- aggregation_predictions_string = [id2aggregation[x] for x in predicted_aggregation_indices]
62
-
63
- answers = []
64
-
65
- for coordinates in predicted_answer_coordinates:
66
- if len(coordinates) == 1:
67
- # only a single cell:
68
- answers.append(table.iat[coordinates[0]])
69
- else:
70
- # multiple cells
71
- cell_values = []
72
- for coordinate in coordinates:
73
- cell_values.append(table.iat[coordinate])
74
- answers.append(", ".join(cell_values))
75
-
76
- st.success('Done! Please check below the answers and its cells highlighted in table above')
77
-
78
- placeholder.dataframe(data.style.apply(styling_specific_cell,tags=predicted_answer_coordinates,colors=colors2,axis=None))
79
-
80
- for query, answer, predicted_agg, c in zip(queries, answers, aggregation_predictions_string, colors1):
81
- st.write('\n')
82
- st.markdown('<font color={} size=4>**{}**</font>'.format(c,query), unsafe_allow_html=True)
83
- st.write('\n')
84
-
85
- if predicted_agg == "NONE" or predicted_agg == 'COUNT':
86
- st.markdown('**>** '+str(answer))
87
- else:
88
- if predicted_agg == 'SUM':
89
- st.markdown('**>** '+str(sum(answer.split(','))))
90
- else:
91
- st.markdown('**>** '+str(np.round(np.mean(answer.split(',')),2)))