Zero-Shot-Material-Transfer / demo_gradio.py
hideosnes's picture
Update demo_gradio.py
e0bd907 verified
raw
history blame
6.23 kB
import spaces
import huggingface_hub
huggingface_hub.snapshot_download(
repo_id='h94/IP-Adapter',
allow_patterns=[
'models/**',
'sdxl_models/**',
],
local_dir='./',
local_dir_use_symlinks=False,
)
import gradio as gr
from diffusers import StableDiffusionXLControlNetInpaintPipeline, ControlNetModel
from rembg import remove
from PIL import Image
import torch
from ip_adapter import IPAdapterXL
from ip_adapter.utils import register_cross_attention_hook, get_net_attn_map, attnmaps2images
from PIL import Image, ImageChops, ImageEnhance
import numpy as np
import os
import glob
import torch
import cv2
import argparse
import DPT.util.io
from torchvision.transforms import Compose
from DPT.dpt.models import DPTDepthModel
from DPT.dpt.midas_net import MidasNet_large
from DPT.dpt.transforms import Resize, NormalizeImage, PrepareForNet
"""
Get ZeST Ready
"""
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl_vit-h.bin"
controlnet_path = "diffusers/controlnet-depth-sdxl-1.0"
device = "cuda"
torch.cuda.empty_cache()
# load SDXL pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_path, variant="fp16", use_safetensors=True, torch_dtype=torch.float16).to(device)
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
use_safetensors=True,
torch_dtype=torch.float16,
add_watermarker=False,
).to(device)
pipe.unet = register_cross_attention_hook(pipe.unet)
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device)
"""
Get Depth Model Ready
"""
model_path = "DPT/weights/dpt_hybrid-midas-501f0c75.pt"
net_w = net_h = 384
model = DPTDepthModel(
path=model_path,
backbone="vitb_rn50_384",
non_negative=True,
enable_attention_hooks=False,
)
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
model.eval()
@spaces.GPU()
def greet(input_image, material_exemplar):
"""
Compute depth map from input_image
"""
img = np.array(input_image)
img_input = transform({"image": img})["image"]
# compute
with torch.no_grad():
sample = torch.from_numpy(img_input).unsqueeze(0)
# if optimize == True and device == torch.device("cuda"):
# sample = sample.to(memory_format=torch.channels_last)
# sample = sample.half()
prediction = model.forward(sample)
prediction = (
torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
)
.squeeze()
.cpu()
.numpy()
)
depth_min = prediction.min()
depth_max = prediction.max()
bits = 2
max_val = (2 ** (8 * bits)) - 1
if depth_max - depth_min > np.finfo("float").eps:
out = max_val * (prediction - depth_min) / (depth_max - depth_min)
else:
out = np.zeros(prediction.shape, dtype=depth.dtype)
out = (out / 256).astype('uint8')
depth_map = Image.fromarray(out).resize((1024, 1024))
"""
Process foreground decolored image
"""
rm_bg = remove(input_image)
target_mask = rm_bg.convert("RGB").point(lambda x: 0 if x < 1 else 255).convert('L').convert('RGB')
mask_target_img = ImageChops.lighter(input_image, target_mask)
invert_target_mask = ImageChops.invert(target_mask)
gray_target_image = input_image.convert('L').convert('RGB')
gray_target_image = ImageEnhance.Brightness(gray_target_image)
factor = 1.0 # Try adjusting this to get the desired brightness
gray_target_image = gray_target_image.enhance(factor)
grayscale_img = ImageChops.darker(gray_target_image, target_mask)
img_black_mask = ImageChops.darker(input_image, invert_target_mask)
grayscale_init_img = ImageChops.lighter(img_black_mask, grayscale_img)
init_img = grayscale_init_img
"""
Process material exemplar and resize all images
"""
ip_image = material_exemplar.resize((1024, 1024))
init_img = init_img.resize((1024,1024))
mask = target_mask.resize((1024, 1024))
num_samples = 1
images = ip_model.generate(pil_image=ip_image, image=init_img, control_image=depth_map, mask_image=mask, controlnet_conditioning_scale=0.9, num_samples=num_samples, num_inference_steps=30, seed=42)
return images[0]
css = """
#col-container{
margin: 0 auto;
max-width: 960px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# KI-Magix für Anne
<p>Lade das Input Bild und das Material-Sample hoch. (Beide Bilder sollten 1024*1024px sein und max. 300kB haben) (-->Memo: Test this!)<br />
Du kannst dich insbesondere mit Lichtsituationen und Belichtung spielen, da das die Info ist, welche die KI verarbeitet.<br />
Bitte den Link nicht weitergeben oder irgendwie veröffentlichen <3</p>
""")
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(type="pil", label="Input")
input_image2 = gr.Image(type="pil", label = "Sample")
submit_btn = gr.Button("Simsalabim")
gr.Examples(
examples = [["demo_assets/input_imgs/pumpkin.png", "demo_assets/material_exemplars/cup_glaze.png"]],
inputs = [input_image, input_image2]
)
with gr.Column():
output_image = gr.Image(label="Magix uWu")
submit_btn.click(fn=greet, inputs=[input_image, input_image2], outputs=[output_image])
demo.queue().launch()