sanchit-gandhi HF staff commited on
Commit
7097513
·
1 Parent(s): 4314e4c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -8
app.py CHANGED
@@ -4,7 +4,7 @@ import gradio as gr
4
  import pytube as pt
5
  from transformers import pipeline
6
 
7
- MODEL_NAME = "openai/whisper-tiny"
8
 
9
  device = 0 if torch.cuda.is_available() else "cpu"
10
 
@@ -21,7 +21,7 @@ transcribe_token_id = all_special_ids[-5]
21
  translate_token_id = all_special_ids[-6]
22
 
23
 
24
- def transcribe(microphone, file_upload, do_translate):
25
  warn_output = ""
26
  if (microphone is not None) and (file_upload is not None):
27
  warn_output = (
@@ -34,7 +34,7 @@ def transcribe(microphone, file_upload, do_translate):
34
 
35
  file = microphone if microphone is not None else file_upload
36
 
37
- pipe.model.config.forced_decoder_ids = [[2, translate_token_id if do_translate else transcribe_token_id]]
38
 
39
  text = pipe(file)["text"]
40
 
@@ -50,13 +50,13 @@ def _return_yt_html_embed(yt_url):
50
  return HTML_str
51
 
52
 
53
- def yt_transcribe(yt_url, do_translate):
54
  yt = pt.YouTube(yt_url)
55
  html_embed_str = _return_yt_html_embed(yt_url)
56
  stream = yt.streams.filter(only_audio=True)[0]
57
  stream.download(filename="audio.mp3")
58
 
59
- pipe.model.config.forced_decoder_ids = [[2, translate_token_id if do_translate else transcribe_token_id]]
60
 
61
  text = pipe("audio.mp3")["text"]
62
 
@@ -70,7 +70,7 @@ mf_transcribe = gr.Interface(
70
  inputs=[
71
  gr.inputs.Audio(source="microphone", type="filepath", optional=True),
72
  gr.inputs.Audio(source="upload", type="filepath", optional=True),
73
- gr.Checkbox(label="Translate?", value=False),
74
  ],
75
  outputs="text",
76
  layout="horizontal",
@@ -86,7 +86,10 @@ mf_transcribe = gr.Interface(
86
 
87
  yt_transcribe = gr.Interface(
88
  fn=yt_transcribe,
89
- inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), gr.Checkbox(label="Translate?", value=False)],
 
 
 
90
  outputs=["html", "text"],
91
  layout="horizontal",
92
  theme="huggingface",
@@ -102,4 +105,5 @@ yt_transcribe = gr.Interface(
102
  with demo:
103
  gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
104
 
105
- demo.launch(enable_queue=True, share=True)
 
 
4
  import pytube as pt
5
  from transformers import pipeline
6
 
7
+ MODEL_NAME = "openai/whisper-large-v2"
8
 
9
  device = 0 if torch.cuda.is_available() else "cpu"
10
 
 
21
  translate_token_id = all_special_ids[-6]
22
 
23
 
24
+ def transcribe(microphone, file_upload, task):
25
  warn_output = ""
26
  if (microphone is not None) and (file_upload is not None):
27
  warn_output = (
 
34
 
35
  file = microphone if microphone is not None else file_upload
36
 
37
+ pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
38
 
39
  text = pipe(file)["text"]
40
 
 
50
  return HTML_str
51
 
52
 
53
+ def yt_transcribe(yt_url, task):
54
  yt = pt.YouTube(yt_url)
55
  html_embed_str = _return_yt_html_embed(yt_url)
56
  stream = yt.streams.filter(only_audio=True)[0]
57
  stream.download(filename="audio.mp3")
58
 
59
+ pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
60
 
61
  text = pipe("audio.mp3")["text"]
62
 
 
70
  inputs=[
71
  gr.inputs.Audio(source="microphone", type="filepath", optional=True),
72
  gr.inputs.Audio(source="upload", type="filepath", optional=True),
73
+ gr.inputs.Radio(["transcribe", "translate"], label="task", default="transcribe"),
74
  ],
75
  outputs="text",
76
  layout="horizontal",
 
86
 
87
  yt_transcribe = gr.Interface(
88
  fn=yt_transcribe,
89
+ inputs=[
90
+ gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
91
+ gr.inputs.Radio(["transcribe", "translate"], label="task", default="transcribe")
92
+ ],
93
  outputs=["html", "text"],
94
  layout="horizontal",
95
  theme="huggingface",
 
105
  with demo:
106
  gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
107
 
108
+ demo.launch(enable_queue=True)
109
+