Spaces:
Runtime error
Runtime error
hereoncollab
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
-
from transformers import pipeline
|
4 |
from huggingface_hub import login
|
5 |
|
6 |
# Read the token from the environment variable
|
@@ -12,23 +13,80 @@ if HUGGINGFACE_TOKEN:
|
|
12 |
else:
|
13 |
raise ValueError("Hugging Face token not found in environment variables.")
|
14 |
|
15 |
-
#
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Create the Gradio interface
|
26 |
interface = gr.Interface(
|
27 |
-
fn=
|
28 |
-
inputs=gr.Textbox(label="prompt:", lines=2, placeholder="prompt"),
|
29 |
outputs="text",
|
30 |
-
title="Gemma",
|
31 |
-
description="
|
32 |
)
|
33 |
|
34 |
# Launch the Gradio app
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
import gradio as gr
|
4 |
+
from transformers import MarianMTModel, MarianTokenizer, pipeline, AutoTokenizer
|
5 |
from huggingface_hub import login
|
6 |
|
7 |
# Read the token from the environment variable
|
|
|
13 |
else:
|
14 |
raise ValueError("Hugging Face token not found in environment variables.")
|
15 |
|
16 |
+
# Define model and tokenizer for translation between Romanian, French, and English
|
17 |
+
rfr_md = "Helsinki-NLP/opus-mt-ro-fr"
|
18 |
+
frr_md = "Helsinki-NLP/opus-mt-fr-en"
|
19 |
+
enr_md = "Helsinki-NLP/opus-mt-en-ro"
|
20 |
|
21 |
+
rfr_token = MarianTokenizer.from_pretrained(rfr_md)
|
22 |
+
rfr_model = MarianMTModel.from_pretrained(rfr_md)
|
23 |
+
fren_token = MarianTokenizer.from_pretrained(frr_md)
|
24 |
+
fren_model = MarianMTModel.from_pretrained(frr_md)
|
25 |
+
enr_token = MarianTokenizer.from_pretrained(enr_md)
|
26 |
+
enr_model = MarianMTModel.from_pretrained(enr_md)
|
27 |
+
|
28 |
+
# Load the Gemma model for text generation, ensuring it runs on CPU
|
29 |
+
gemma_model = "google/gemma-2-2b-it"
|
30 |
+
gemma_tokenizer = AutoTokenizer.from_pretrained(gemma_model)
|
31 |
+
|
32 |
+
pipe = pipeline(
|
33 |
+
"text-generation",
|
34 |
+
model=gemma_model,
|
35 |
+
tokenizer=gemma_tokenizer,
|
36 |
+
device="cpu" # Use CPU
|
37 |
+
)
|
38 |
+
|
39 |
+
# Function to split text into smaller blocks for translation
|
40 |
+
def char_split(text, tokenizer, max_length=498):
|
41 |
+
tokens = tokenizer(text, return_tensors="pt", truncation=False, padding=False)["input_ids"][0]
|
42 |
+
blocks_ = []
|
43 |
+
start = 0
|
44 |
+
while start < len(tokens):
|
45 |
+
end = min(start + max_length, len(tokens))
|
46 |
+
blocks_.append(tokens[start:end])
|
47 |
+
start = end
|
48 |
+
return blocks_
|
49 |
+
|
50 |
+
# Function to translate the text block by block
|
51 |
+
def translate(text, model, tokenizer, max_length=500):
|
52 |
+
token_blocks = char_split(text, tokenizer, max_length)
|
53 |
+
text_en = ""
|
54 |
+
|
55 |
+
for blk_ in token_blocks:
|
56 |
+
blk_char = tokenizer.decode(blk_, skip_special_tokens=True)
|
57 |
+
translated = model.generate(**tokenizer(blk_char, return_tensors="pt", padding=True, truncation=True))
|
58 |
+
text_en += tokenizer.decode(translated[0], skip_special_tokens=True) + " "
|
59 |
+
return text_en.strip()
|
60 |
+
|
61 |
+
# Function to remove formatting symbols
|
62 |
+
def rm_rf(text):
|
63 |
+
import re
|
64 |
+
return re.sub(r'\*+', '', text)
|
65 |
+
|
66 |
+
# Generate text based on Romanian input
|
67 |
+
def generate(text):
|
68 |
+
fr_txt = translate(text, rfr_model, rfr_token)
|
69 |
+
en_txt = translate(fr_txt, fren_model, fren_token)
|
70 |
+
|
71 |
+
sequences = pipe(
|
72 |
+
en_txt,
|
73 |
+
max_new_tokens=2048,
|
74 |
+
do_sample=True,
|
75 |
+
return_full_text=False,
|
76 |
+
)
|
77 |
+
|
78 |
+
generated_text = sequences[0]['generated_text']
|
79 |
+
cl_txt = rm_rf(generated_text)
|
80 |
+
ro_txt = translate(cl_txt, enr_model, enr_token)
|
81 |
+
return ro_txt
|
82 |
|
83 |
# Create the Gradio interface
|
84 |
interface = gr.Interface(
|
85 |
+
fn=generate,
|
86 |
+
inputs=gr.Textbox(label="prompt:", lines=2, placeholder="prompt..."),
|
87 |
outputs="text",
|
88 |
+
title="Gemma Romanian",
|
89 |
+
description="romanian gemma using nlps."
|
90 |
)
|
91 |
|
92 |
# Launch the Gradio app
|