henry000 commited on
Commit
fa548df
Β·
1 Parent(s): 83bfa31

πŸ’š [Pass] format check and refactor code

Browse files
yolo/tools/data_augmentation.py CHANGED
@@ -67,7 +67,7 @@ class PadAndResize:
67
  scale = min(self.target_width / img_width, self.target_height / img_height)
68
  new_width, new_height = int(img_width * scale), int(img_height * scale)
69
 
70
- resized_image = image.resize((new_width, new_height), Image.LANCZOS)
71
 
72
  pad_left = (self.target_width - new_width) // 2
73
  pad_top = (self.target_height - new_height) // 2
 
67
  scale = min(self.target_width / img_width, self.target_height / img_height)
68
  new_width, new_height = int(img_width * scale), int(img_height * scale)
69
 
70
+ resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
71
 
72
  pad_left = (self.target_width - new_width) // 2
73
  pad_top = (self.target_height - new_height) // 2
yolo/tools/solver.py CHANGED
@@ -48,8 +48,9 @@ class ValidateModel(BaseModel):
48
  batch_size, images, targets, rev_tensor, img_paths = batch
49
  H, W = images.shape[2:]
50
  predicts = self.post_process(self.ema(images), image_size=[W, H])
51
- self.metric.update([to_metrics_format(predict) for predict in predicts],
52
- [to_metrics_format(target) for target in targets])
 
53
  return predicts
54
 
55
  def on_validation_epoch_end(self):
 
48
  batch_size, images, targets, rev_tensor, img_paths = batch
49
  H, W = images.shape[2:]
50
  predicts = self.post_process(self.ema(images), image_size=[W, H])
51
+ self.metric.update(
52
+ [to_metrics_format(predict) for predict in predicts], [to_metrics_format(target) for target in targets]
53
+ )
54
  return predicts
55
 
56
  def on_validation_epoch_end(self):
yolo/utils/dataset_utils.py CHANGED
@@ -104,13 +104,8 @@ def scale_segmentation(
104
  if "segmentation" in anno:
105
  seg_list = [item for sublist in anno["segmentation"] for item in sublist]
106
  elif "bbox" in anno:
107
- x,y,width,height = anno["bbox"]
108
- seg_list = [
109
- x, y, # Top-left corner
110
- x + width, y, # Top-right corner
111
- x + width, y + height, # Bottom-right corner
112
- x, y + height # Bottom-left corner
113
- ]
114
 
115
  scaled_seg_data = (
116
  np.array(seg_list).reshape(-1, 2) / [w, h]
 
104
  if "segmentation" in anno:
105
  seg_list = [item for sublist in anno["segmentation"] for item in sublist]
106
  elif "bbox" in anno:
107
+ x, y, width, height = anno["bbox"]
108
+ seg_list = [x, y, x + width, y, x + width, y + height, x, y + height]
 
 
 
 
 
109
 
110
  scaled_seg_data = (
111
  np.array(seg_list).reshape(-1, 2) / [w, h]