helenai's picture
Update preset tokenizers
ec62405
raw
history blame
2.37 kB
import pprint
import subprocess
from pathlib import Path
import gradio as gr
from test_prompt_generator.test_prompt_generator import _preset_tokenizers, generate_prompt
# log system info for debugging purposes
result = subprocess.run(["lscpu"], text=True, capture_output=True)
pprint.pprint(result.stdout)
result = subprocess.run(["pip", "freeze"], text=True, capture_output=True)
pprint.pprint(result.stdout)
def generate(tokenizer_id, num_tokens, prefix=None, source_text=None):
output_path = Path(f"prompt_{num_tokens}.jsonl")
if output_path.exists():
output_path.unlink()
prompt = generate_prompt(
tokenizer_id, int(num_tokens), prefix=prefix, source_text=source_text, output_file=output_path
)
if tokenizer_id in _preset_tokenizers:
tokenizer_id = _preset_tokenizers[tokenizer_id]
return prompt, str(output_path), tokenizer_id
demo = gr.Interface(
fn=generate,
title="Test Prompt Generator",
description="Generate prompts with a given number of tokens for testing transformer models. "
"Prompt source: https://archive.org/stream/alicesadventures19033gut/19033.txt",
inputs=[
gr.Dropdown(
label="Tokenizer",
choices=_preset_tokenizers,
value="mistral",
allow_custom_value=True,
info="Select a tokenizer from this list or paste a model_id from a model on the Hugging Face Hub",
),
gr.Number(
label="Number of Tokens", minimum=4, maximum=2048, value=32, info="Enter a number between 4 and 2048."
),
gr.Textbox(
label="Prefix (optional)",
info="If given, the start of the prompt will be this prefix. Example: 'Summarize the following text:'",
),
gr.Textbox(
label="Source text (optional)",
info="By default, prompts will be generated from Alice in Wonderland. Enter text here to use that instead.",
),
],
outputs=[
gr.Textbox(label="prompt", show_copy_button=True),
gr.File(label="Json file"),
gr.Markdown(label="tokenizer"),
],
examples=[
["mistral", 32],
["mistral", 64],
["mistral", 128],
["mistral", 512],
["mistral", 1024],
["mistral", 2048],
],
cache_examples=False,
allow_flagging=False,
)
demo.launch()