|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import gc |
|
import logging |
|
import sys |
|
import time |
|
from typing import List, Optional |
|
|
|
from cuml.linear_model import LogisticRegression |
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
import torch.distributed |
|
from torch import nn |
|
from torch.utils.data import TensorDataset |
|
from torchmetrics import MetricTracker |
|
|
|
from dinov2.data import make_dataset |
|
from dinov2.data.transforms import make_classification_eval_transform |
|
from dinov2.distributed import get_global_rank, get_global_size |
|
from dinov2.eval.metrics import MetricType, build_metric |
|
from dinov2.eval.setup import get_args_parser as get_setup_args_parser |
|
from dinov2.eval.setup import setup_and_build_model |
|
from dinov2.eval.utils import evaluate, extract_features |
|
from dinov2.utils.dtype import as_torch_dtype |
|
|
|
|
|
logger = logging.getLogger("dinov2") |
|
|
|
DEFAULT_MAX_ITER = 1_000 |
|
C_POWER_RANGE = torch.linspace(-6, 5, 45) |
|
_CPU_DEVICE = torch.device("cpu") |
|
|
|
|
|
def get_args_parser( |
|
description: Optional[str] = None, |
|
parents: Optional[List[argparse.ArgumentParser]] = None, |
|
add_help: bool = True, |
|
): |
|
parents = parents or [] |
|
setup_args_parser = get_setup_args_parser(parents=parents, add_help=False) |
|
parents = [setup_args_parser] |
|
parser = argparse.ArgumentParser( |
|
description=description, |
|
parents=parents, |
|
add_help=add_help, |
|
) |
|
parser.add_argument( |
|
"--train-dataset", |
|
dest="train_dataset_str", |
|
type=str, |
|
help="Training dataset", |
|
) |
|
parser.add_argument( |
|
"--val-dataset", |
|
dest="val_dataset_str", |
|
type=str, |
|
help="Validation dataset", |
|
) |
|
parser.add_argument( |
|
"--finetune-dataset-str", |
|
dest="finetune_dataset_str", |
|
type=str, |
|
help="Fine-tuning dataset", |
|
) |
|
parser.add_argument( |
|
"--finetune-on-val", |
|
action="store_true", |
|
help="If there is no finetune dataset, whether to choose the " |
|
"hyperparameters on the val set instead of 10%% of the train dataset", |
|
) |
|
parser.add_argument( |
|
"--metric-type", |
|
type=MetricType, |
|
choices=list(MetricType), |
|
help="Metric type", |
|
) |
|
parser.add_argument( |
|
"--train-features-device", |
|
type=str, |
|
help="Device to gather train features (cpu, cuda, cuda:0, etc.), default: %(default)s", |
|
) |
|
parser.add_argument( |
|
"--train-dtype", |
|
type=str, |
|
help="Data type to convert the train features to (default: %(default)s)", |
|
) |
|
parser.add_argument( |
|
"--max-train-iters", |
|
type=int, |
|
help="Maximum number of train iterations (default: %(default)s)", |
|
) |
|
parser.set_defaults( |
|
train_dataset_str="ImageNet:split=TRAIN", |
|
val_dataset_str="ImageNet:split=VAL", |
|
finetune_dataset_str=None, |
|
metric_type=MetricType.MEAN_ACCURACY, |
|
train_features_device="cpu", |
|
train_dtype="float64", |
|
max_train_iters=DEFAULT_MAX_ITER, |
|
finetune_on_val=False, |
|
) |
|
return parser |
|
|
|
|
|
class LogRegModule(nn.Module): |
|
def __init__( |
|
self, |
|
C, |
|
max_iter=DEFAULT_MAX_ITER, |
|
dtype=torch.float64, |
|
device=_CPU_DEVICE, |
|
): |
|
super().__init__() |
|
self.dtype = dtype |
|
self.device = device |
|
self.estimator = LogisticRegression( |
|
penalty="l2", |
|
C=C, |
|
max_iter=max_iter, |
|
output_type="numpy", |
|
tol=1e-12, |
|
linesearch_max_iter=50, |
|
) |
|
|
|
def forward(self, samples, targets): |
|
samples_device = samples.device |
|
samples = samples.to(dtype=self.dtype, device=self.device) |
|
if self.device == _CPU_DEVICE: |
|
samples = samples.numpy() |
|
probas = self.estimator.predict_proba(samples) |
|
return {"preds": torch.from_numpy(probas).to(samples_device), "target": targets} |
|
|
|
def fit(self, train_features, train_labels): |
|
train_features = train_features.to(dtype=self.dtype, device=self.device) |
|
train_labels = train_labels.to(dtype=self.dtype, device=self.device) |
|
if self.device == _CPU_DEVICE: |
|
|
|
train_features = train_features.numpy() |
|
train_labels = train_labels.numpy() |
|
self.estimator.fit(train_features, train_labels) |
|
|
|
|
|
def evaluate_model(*, logreg_model, logreg_metric, test_data_loader, device): |
|
postprocessors = {"metrics": logreg_model} |
|
metrics = {"metrics": logreg_metric} |
|
return evaluate(nn.Identity(), test_data_loader, postprocessors, metrics, device) |
|
|
|
|
|
def train_for_C(*, C, max_iter, train_features, train_labels, dtype=torch.float64, device=_CPU_DEVICE): |
|
logreg_model = LogRegModule(C, max_iter=max_iter, dtype=dtype, device=device) |
|
logreg_model.fit(train_features, train_labels) |
|
return logreg_model |
|
|
|
|
|
def train_and_evaluate( |
|
*, |
|
C, |
|
max_iter, |
|
train_features, |
|
train_labels, |
|
logreg_metric, |
|
test_data_loader, |
|
train_dtype=torch.float64, |
|
train_features_device, |
|
eval_device, |
|
): |
|
logreg_model = train_for_C( |
|
C=C, |
|
max_iter=max_iter, |
|
train_features=train_features, |
|
train_labels=train_labels, |
|
dtype=train_dtype, |
|
device=train_features_device, |
|
) |
|
return evaluate_model( |
|
logreg_model=logreg_model, |
|
logreg_metric=logreg_metric, |
|
test_data_loader=test_data_loader, |
|
device=eval_device, |
|
) |
|
|
|
|
|
def sweep_C_values( |
|
*, |
|
train_features, |
|
train_labels, |
|
test_data_loader, |
|
metric_type, |
|
num_classes, |
|
train_dtype=torch.float64, |
|
train_features_device=_CPU_DEVICE, |
|
max_train_iters=DEFAULT_MAX_ITER, |
|
): |
|
if metric_type == MetricType.PER_CLASS_ACCURACY: |
|
|
|
metric_type = MetricType.MEAN_PER_CLASS_ACCURACY |
|
logreg_metric = build_metric(metric_type, num_classes=num_classes) |
|
metric_tracker = MetricTracker(logreg_metric, maximize=True) |
|
ALL_C = 10**C_POWER_RANGE |
|
logreg_models = {} |
|
|
|
train_features = train_features.to(dtype=train_dtype, device=train_features_device) |
|
train_labels = train_labels.to(device=train_features_device) |
|
|
|
for i in range(get_global_rank(), len(ALL_C), get_global_size()): |
|
C = ALL_C[i].item() |
|
logger.info( |
|
f"Training for C = {C:.5f}, dtype={train_dtype}, " |
|
f"features: {train_features.shape}, {train_features.dtype}, " |
|
f"labels: {train_labels.shape}, {train_labels.dtype}" |
|
) |
|
logreg_models[C] = train_for_C( |
|
C=C, |
|
max_iter=max_train_iters, |
|
train_features=train_features, |
|
train_labels=train_labels, |
|
dtype=train_dtype, |
|
device=train_features_device, |
|
) |
|
|
|
gather_list = [None for _ in range(get_global_size())] |
|
torch.distributed.all_gather_object(gather_list, logreg_models) |
|
|
|
logreg_models_gathered = {} |
|
for logreg_dict in gather_list: |
|
logreg_models_gathered.update(logreg_dict) |
|
|
|
for i in range(len(ALL_C)): |
|
metric_tracker.increment() |
|
C = ALL_C[i].item() |
|
evals = evaluate_model( |
|
logreg_model=logreg_models_gathered[C], |
|
logreg_metric=metric_tracker, |
|
test_data_loader=test_data_loader, |
|
device=torch.cuda.current_device(), |
|
) |
|
logger.info(f"Trained for C = {C:.5f}, accuracies = {evals}") |
|
|
|
best_stats, which_epoch = metric_tracker.best_metric(return_step=True) |
|
best_stats_100 = {k: 100.0 * v for k, v in best_stats.items()} |
|
if which_epoch["top-1"] == i: |
|
best_C = C |
|
logger.info(f"Sweep best {best_stats_100}, best C = {best_C:.6f}") |
|
|
|
return best_stats, best_C |
|
|
|
|
|
def eval_log_regression( |
|
*, |
|
model, |
|
train_dataset, |
|
val_dataset, |
|
finetune_dataset, |
|
metric_type, |
|
batch_size, |
|
num_workers, |
|
finetune_on_val=False, |
|
train_dtype=torch.float64, |
|
train_features_device=_CPU_DEVICE, |
|
max_train_iters=DEFAULT_MAX_ITER, |
|
): |
|
""" |
|
Implements the "standard" process for log regression evaluation: |
|
The value of C is chosen by training on train_dataset and evaluating on |
|
finetune_dataset. Then, the final model is trained on a concatenation of |
|
train_dataset and finetune_dataset, and is evaluated on val_dataset. |
|
If there is no finetune_dataset, the value of C is the one that yields |
|
the best results on a random 10% subset of the train dataset |
|
""" |
|
|
|
start = time.time() |
|
|
|
train_features, train_labels = extract_features( |
|
model, train_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE) |
|
) |
|
val_features, val_labels = extract_features( |
|
model, val_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE) |
|
) |
|
val_data_loader = torch.utils.data.DataLoader( |
|
TensorDataset(val_features, val_labels), |
|
batch_size=batch_size, |
|
drop_last=False, |
|
num_workers=0, |
|
persistent_workers=False, |
|
) |
|
|
|
if finetune_dataset is None and finetune_on_val: |
|
logger.info("Choosing hyperparameters on the val dataset") |
|
finetune_features, finetune_labels = val_features, val_labels |
|
elif finetune_dataset is None and not finetune_on_val: |
|
logger.info("Choosing hyperparameters on 10% of the train dataset") |
|
torch.manual_seed(0) |
|
indices = torch.randperm(len(train_features), device=train_features.device) |
|
finetune_index = indices[: len(train_features) // 10] |
|
train_index = indices[len(train_features) // 10 :] |
|
finetune_features, finetune_labels = train_features[finetune_index], train_labels[finetune_index] |
|
train_features, train_labels = train_features[train_index], train_labels[train_index] |
|
else: |
|
logger.info("Choosing hyperparameters on the finetune dataset") |
|
finetune_features, finetune_labels = extract_features( |
|
model, finetune_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE) |
|
) |
|
|
|
del model |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
finetune_data_loader = torch.utils.data.DataLoader( |
|
TensorDataset(finetune_features, finetune_labels), |
|
batch_size=batch_size, |
|
drop_last=False, |
|
) |
|
|
|
if len(train_labels.shape) > 1: |
|
num_classes = train_labels.shape[1] |
|
else: |
|
num_classes = train_labels.max() + 1 |
|
|
|
logger.info("Using cuML for logistic regression") |
|
|
|
best_stats, best_C = sweep_C_values( |
|
train_features=train_features, |
|
train_labels=train_labels, |
|
test_data_loader=finetune_data_loader, |
|
metric_type=metric_type, |
|
num_classes=num_classes, |
|
train_dtype=train_dtype, |
|
train_features_device=train_features_device, |
|
max_train_iters=max_train_iters, |
|
) |
|
|
|
if not finetune_on_val: |
|
logger.info("Best parameter found, concatenating features") |
|
train_features = torch.cat((train_features, finetune_features)) |
|
train_labels = torch.cat((train_labels, finetune_labels)) |
|
|
|
logger.info("Training final model") |
|
logreg_metric = build_metric(metric_type, num_classes=num_classes) |
|
evals = train_and_evaluate( |
|
C=best_C, |
|
max_iter=max_train_iters, |
|
train_features=train_features, |
|
train_labels=train_labels, |
|
logreg_metric=logreg_metric.clone(), |
|
test_data_loader=val_data_loader, |
|
eval_device=torch.cuda.current_device(), |
|
train_dtype=train_dtype, |
|
train_features_device=train_features_device, |
|
) |
|
|
|
best_stats = evals[1]["metrics"] |
|
|
|
best_stats["best_C"] = best_C |
|
|
|
logger.info(f"Log regression evaluation done in {int(time.time() - start)}s") |
|
return best_stats |
|
|
|
|
|
def eval_log_regression_with_model( |
|
model, |
|
train_dataset_str="ImageNet:split=TRAIN", |
|
val_dataset_str="ImageNet:split=VAL", |
|
finetune_dataset_str=None, |
|
autocast_dtype=torch.float, |
|
finetune_on_val=False, |
|
metric_type=MetricType.MEAN_ACCURACY, |
|
train_dtype=torch.float64, |
|
train_features_device=_CPU_DEVICE, |
|
max_train_iters=DEFAULT_MAX_ITER, |
|
): |
|
cudnn.benchmark = True |
|
|
|
transform = make_classification_eval_transform(resize_size=224) |
|
target_transform = None |
|
|
|
train_dataset = make_dataset(dataset_str=train_dataset_str, transform=transform, target_transform=target_transform) |
|
val_dataset = make_dataset(dataset_str=val_dataset_str, transform=transform, target_transform=target_transform) |
|
if finetune_dataset_str is not None: |
|
finetune_dataset = make_dataset( |
|
dataset_str=finetune_dataset_str, transform=transform, target_transform=target_transform |
|
) |
|
else: |
|
finetune_dataset = None |
|
|
|
with torch.cuda.amp.autocast(dtype=autocast_dtype): |
|
results_dict_logreg = eval_log_regression( |
|
model=model, |
|
train_dataset=train_dataset, |
|
val_dataset=val_dataset, |
|
finetune_dataset=finetune_dataset, |
|
metric_type=metric_type, |
|
batch_size=256, |
|
num_workers=0, |
|
finetune_on_val=finetune_on_val, |
|
train_dtype=train_dtype, |
|
train_features_device=train_features_device, |
|
max_train_iters=max_train_iters, |
|
) |
|
|
|
results_dict = { |
|
"top-1": results_dict_logreg["top-1"].cpu().numpy() * 100.0, |
|
"top-5": results_dict_logreg.get("top-5", torch.tensor(0.0)).cpu().numpy() * 100.0, |
|
"best_C": results_dict_logreg["best_C"], |
|
} |
|
logger.info( |
|
"\n".join( |
|
[ |
|
"Training of the supervised logistic regression on frozen features completed.\n" |
|
"Top-1 test accuracy: {acc:.1f}".format(acc=results_dict["top-1"]), |
|
"Top-5 test accuracy: {acc:.1f}".format(acc=results_dict["top-5"]), |
|
"obtained for C = {c:.6f}".format(c=results_dict["best_C"]), |
|
] |
|
) |
|
) |
|
|
|
torch.distributed.barrier() |
|
return results_dict |
|
|
|
|
|
def main(args): |
|
model, autocast_dtype = setup_and_build_model(args) |
|
eval_log_regression_with_model( |
|
model=model, |
|
train_dataset_str=args.train_dataset_str, |
|
val_dataset_str=args.val_dataset_str, |
|
finetune_dataset_str=args.finetune_dataset_str, |
|
autocast_dtype=autocast_dtype, |
|
finetune_on_val=args.finetune_on_val, |
|
metric_type=args.metric_type, |
|
train_dtype=as_torch_dtype(args.train_dtype), |
|
train_features_device=torch.device(args.train_features_device), |
|
max_train_iters=args.max_train_iters, |
|
) |
|
return 0 |
|
|
|
|
|
if __name__ == "__main__": |
|
description = "DINOv2 logistic regression evaluation" |
|
args_parser = get_args_parser(description=description) |
|
args = args_parser.parse_args() |
|
sys.exit(main(args)) |
|
|