Spaces:
Running
on
Zero
Running
on
Zero
import importlib | |
import math | |
from collections import defaultdict | |
from dataclasses import dataclass | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import imageio | |
import numpy as np | |
import PIL.Image | |
import rembg | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import trimesh | |
from omegaconf import DictConfig, OmegaConf | |
from PIL import Image | |
def parse_structured(fields: Any, cfg: Optional[Union[dict, DictConfig]] = None) -> Any: | |
scfg = OmegaConf.merge(OmegaConf.structured(fields), cfg) | |
return scfg | |
def find_class(cls_string): | |
module_string = ".".join(cls_string.split(".")[:-1]) | |
cls_name = cls_string.split(".")[-1] | |
module = importlib.import_module(module_string, package=None) | |
cls = getattr(module, cls_name) | |
return cls | |
def get_intrinsic_from_fov(fov, H, W, bs=-1): | |
focal_length = 0.5 * H / np.tan(0.5 * fov) | |
intrinsic = np.identity(3, dtype=np.float32) | |
intrinsic[0, 0] = focal_length | |
intrinsic[1, 1] = focal_length | |
intrinsic[0, 2] = W / 2.0 | |
intrinsic[1, 2] = H / 2.0 | |
if bs > 0: | |
intrinsic = intrinsic[None].repeat(bs, axis=0) | |
return torch.from_numpy(intrinsic) | |
class BaseModule(nn.Module): | |
class Config: | |
pass | |
cfg: Config # add this to every subclass of BaseModule to enable static type checking | |
def __init__( | |
self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs | |
) -> None: | |
super().__init__() | |
self.cfg = parse_structured(self.Config, cfg) | |
self.configure(*args, **kwargs) | |
def configure(self, *args, **kwargs) -> None: | |
raise NotImplementedError | |
class ImagePreprocessor: | |
def convert_and_resize( | |
self, | |
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], | |
size: int, | |
): | |
if isinstance(image, PIL.Image.Image): | |
image = torch.from_numpy(np.array(image).astype(np.float32) / 255.0) | |
elif isinstance(image, np.ndarray): | |
if image.dtype == np.uint8: | |
image = torch.from_numpy(image.astype(np.float32) / 255.0) | |
else: | |
image = torch.from_numpy(image) | |
elif isinstance(image, torch.Tensor): | |
pass | |
batched = image.ndim == 4 | |
if not batched: | |
image = image[None, ...] | |
image = F.interpolate( | |
image.permute(0, 3, 1, 2), | |
(size, size), | |
mode="bilinear", | |
align_corners=False, | |
antialias=True, | |
).permute(0, 2, 3, 1) | |
if not batched: | |
image = image[0] | |
return image | |
def __call__( | |
self, | |
image: Union[ | |
PIL.Image.Image, | |
np.ndarray, | |
torch.FloatTensor, | |
List[PIL.Image.Image], | |
List[np.ndarray], | |
List[torch.FloatTensor], | |
], | |
size: int, | |
) -> Any: | |
if isinstance(image, (np.ndarray, torch.FloatTensor)) and image.ndim == 4: | |
image = self.convert_and_resize(image, size) | |
else: | |
if not isinstance(image, list): | |
image = [image] | |
image = [self.convert_and_resize(im, size) for im in image] | |
image = torch.stack(image, dim=0) | |
return image | |
def rays_intersect_bbox( | |
rays_o: torch.Tensor, | |
rays_d: torch.Tensor, | |
radius: float, | |
near: float = 0.0, | |
valid_thresh: float = 0.01, | |
): | |
input_shape = rays_o.shape[:-1] | |
rays_o, rays_d = rays_o.view(-1, 3), rays_d.view(-1, 3) | |
rays_d_valid = torch.where( | |
rays_d.abs() < 1e-6, torch.full_like(rays_d, 1e-6), rays_d | |
) | |
if type(radius) in [int, float]: | |
radius = torch.FloatTensor( | |
[[-radius, radius], [-radius, radius], [-radius, radius]] | |
).to(rays_o.device) | |
radius = ( | |
1.0 - 1.0e-3 | |
) * radius # tighten the radius to make sure the intersection point lies in the bounding box | |
interx0 = (radius[..., 1] - rays_o) / rays_d_valid | |
interx1 = (radius[..., 0] - rays_o) / rays_d_valid | |
t_near = torch.minimum(interx0, interx1).amax(dim=-1).clamp_min(near) | |
t_far = torch.maximum(interx0, interx1).amin(dim=-1) | |
# check wheter a ray intersects the bbox or not | |
rays_valid = t_far - t_near > valid_thresh | |
t_near[torch.where(~rays_valid)] = 0.0 | |
t_far[torch.where(~rays_valid)] = 0.0 | |
t_near = t_near.view(*input_shape, 1) | |
t_far = t_far.view(*input_shape, 1) | |
rays_valid = rays_valid.view(*input_shape) | |
return t_near, t_far, rays_valid | |
def chunk_batch(func: Callable, chunk_size: int, *args, **kwargs) -> Any: | |
if chunk_size <= 0: | |
return func(*args, **kwargs) | |
B = None | |
for arg in list(args) + list(kwargs.values()): | |
if isinstance(arg, torch.Tensor): | |
B = arg.shape[0] | |
break | |
assert ( | |
B is not None | |
), "No tensor found in args or kwargs, cannot determine batch size." | |
out = defaultdict(list) | |
out_type = None | |
# max(1, B) to support B == 0 | |
for i in range(0, max(1, B), chunk_size): | |
out_chunk = func( | |
*[ | |
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg | |
for arg in args | |
], | |
**{ | |
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg | |
for k, arg in kwargs.items() | |
}, | |
) | |
if out_chunk is None: | |
continue | |
out_type = type(out_chunk) | |
if isinstance(out_chunk, torch.Tensor): | |
out_chunk = {0: out_chunk} | |
elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list): | |
chunk_length = len(out_chunk) | |
out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)} | |
elif isinstance(out_chunk, dict): | |
pass | |
else: | |
print( | |
f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}." | |
) | |
exit(1) | |
for k, v in out_chunk.items(): | |
v = v if torch.is_grad_enabled() else v.detach() | |
out[k].append(v) | |
if out_type is None: | |
return None | |
out_merged: Dict[Any, Optional[torch.Tensor]] = {} | |
for k, v in out.items(): | |
if all([vv is None for vv in v]): | |
# allow None in return value | |
out_merged[k] = None | |
elif all([isinstance(vv, torch.Tensor) for vv in v]): | |
out_merged[k] = torch.cat(v, dim=0) | |
else: | |
raise TypeError( | |
f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}" | |
) | |
if out_type is torch.Tensor: | |
return out_merged[0] | |
elif out_type in [tuple, list]: | |
return out_type([out_merged[i] for i in range(chunk_length)]) | |
elif out_type is dict: | |
return out_merged | |
ValidScale = Union[Tuple[float, float], torch.FloatTensor] | |
def scale_tensor(dat: torch.FloatTensor, inp_scale: ValidScale, tgt_scale: ValidScale): | |
if inp_scale is None: | |
inp_scale = (0, 1) | |
if tgt_scale is None: | |
tgt_scale = (0, 1) | |
if isinstance(tgt_scale, torch.FloatTensor): | |
assert dat.shape[-1] == tgt_scale.shape[-1] | |
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0]) | |
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0] | |
return dat | |
def get_activation(name) -> Callable: | |
if name is None: | |
return lambda x: x | |
name = name.lower() | |
if name == "none": | |
return lambda x: x | |
elif name == "exp": | |
return lambda x: torch.exp(x) | |
elif name == "sigmoid": | |
return lambda x: torch.sigmoid(x) | |
elif name == "tanh": | |
return lambda x: torch.tanh(x) | |
elif name == "softplus": | |
return lambda x: F.softplus(x) | |
else: | |
try: | |
return getattr(F, name) | |
except AttributeError: | |
raise ValueError(f"Unknown activation function: {name}") | |
def get_ray_directions( | |
H: int, | |
W: int, | |
focal: Union[float, Tuple[float, float]], | |
principal: Optional[Tuple[float, float]] = None, | |
use_pixel_centers: bool = True, | |
normalize: bool = True, | |
) -> torch.FloatTensor: | |
""" | |
Get ray directions for all pixels in camera coordinate. | |
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/ | |
ray-tracing-generating-camera-rays/standard-coordinate-systems | |
Inputs: | |
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers | |
Outputs: | |
directions: (H, W, 3), the direction of the rays in camera coordinate | |
""" | |
pixel_center = 0.5 if use_pixel_centers else 0 | |
if isinstance(focal, float): | |
fx, fy = focal, focal | |
cx, cy = W / 2, H / 2 | |
else: | |
fx, fy = focal | |
assert principal is not None | |
cx, cy = principal | |
i, j = torch.meshgrid( | |
torch.arange(W, dtype=torch.float32) + pixel_center, | |
torch.arange(H, dtype=torch.float32) + pixel_center, | |
indexing="xy", | |
) | |
directions = torch.stack([(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1) | |
if normalize: | |
directions = F.normalize(directions, dim=-1) | |
return directions | |
def get_rays( | |
directions, | |
c2w, | |
keepdim=False, | |
normalize=False, | |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
# Rotate ray directions from camera coordinate to the world coordinate | |
assert directions.shape[-1] == 3 | |
if directions.ndim == 2: # (N_rays, 3) | |
if c2w.ndim == 2: # (4, 4) | |
c2w = c2w[None, :, :] | |
assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4) | |
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3) | |
rays_o = c2w[:, :3, 3].expand(rays_d.shape) | |
elif directions.ndim == 3: # (H, W, 3) | |
assert c2w.ndim in [2, 3] | |
if c2w.ndim == 2: # (4, 4) | |
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum( | |
-1 | |
) # (H, W, 3) | |
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape) | |
elif c2w.ndim == 3: # (B, 4, 4) | |
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( | |
-1 | |
) # (B, H, W, 3) | |
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) | |
elif directions.ndim == 4: # (B, H, W, 3) | |
assert c2w.ndim == 3 # (B, 4, 4) | |
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( | |
-1 | |
) # (B, H, W, 3) | |
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) | |
if normalize: | |
rays_d = F.normalize(rays_d, dim=-1) | |
if not keepdim: | |
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3) | |
return rays_o, rays_d | |
def get_spherical_cameras( | |
n_views: int, | |
elevation_deg: float, | |
camera_distance: float, | |
fovy_deg: float, | |
height: int, | |
width: int, | |
): | |
azimuth_deg = torch.linspace(0, 360.0, n_views + 1)[:n_views] | |
elevation_deg = torch.full_like(azimuth_deg, elevation_deg) | |
camera_distances = torch.full_like(elevation_deg, camera_distance) | |
elevation = elevation_deg * math.pi / 180 | |
azimuth = azimuth_deg * math.pi / 180 | |
# convert spherical coordinates to cartesian coordinates | |
# right hand coordinate system, x back, y right, z up | |
# elevation in (-90, 90), azimuth from +x to +y in (-180, 180) | |
camera_positions = torch.stack( | |
[ | |
camera_distances * torch.cos(elevation) * torch.cos(azimuth), | |
camera_distances * torch.cos(elevation) * torch.sin(azimuth), | |
camera_distances * torch.sin(elevation), | |
], | |
dim=-1, | |
) | |
# default scene center at origin | |
center = torch.zeros_like(camera_positions) | |
# default camera up direction as +z | |
up = torch.as_tensor([0, 0, 1], dtype=torch.float32)[None, :].repeat(n_views, 1) | |
fovy = torch.full_like(elevation_deg, fovy_deg) * math.pi / 180 | |
lookat = F.normalize(center - camera_positions, dim=-1) | |
right = F.normalize(torch.cross(lookat, up), dim=-1) | |
up = F.normalize(torch.cross(right, lookat), dim=-1) | |
c2w3x4 = torch.cat( | |
[torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]], | |
dim=-1, | |
) | |
c2w = torch.cat([c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1) | |
c2w[:, 3, 3] = 1.0 | |
# get directions by dividing directions_unit_focal by focal length | |
focal_length = 0.5 * height / torch.tan(0.5 * fovy) | |
directions_unit_focal = get_ray_directions( | |
H=height, | |
W=width, | |
focal=1.0, | |
) | |
directions = directions_unit_focal[None, :, :, :].repeat(n_views, 1, 1, 1) | |
directions[:, :, :, :2] = ( | |
directions[:, :, :, :2] / focal_length[:, None, None, None] | |
) | |
# must use normalize=True to normalize directions here | |
rays_o, rays_d = get_rays(directions, c2w, keepdim=True, normalize=True) | |
return rays_o, rays_d | |
def remove_background( | |
image: PIL.Image.Image, | |
rembg_session: Any = None, | |
force: bool = False, | |
**rembg_kwargs, | |
) -> PIL.Image.Image: | |
do_remove = True | |
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
do_remove = False | |
do_remove = do_remove or force | |
if do_remove: | |
image = rembg.remove(image, session=rembg_session, **rembg_kwargs) | |
return image | |
def resize_foreground( | |
image: PIL.Image.Image, | |
ratio: float, | |
) -> PIL.Image.Image: | |
image = np.array(image) | |
assert image.shape[-1] == 4 | |
alpha = np.where(image[..., 3] > 0) | |
y1, y2, x1, x2 = ( | |
alpha[0].min(), | |
alpha[0].max(), | |
alpha[1].min(), | |
alpha[1].max(), | |
) | |
# crop the foreground | |
fg = image[y1:y2, x1:x2] | |
# pad to square | |
size = max(fg.shape[0], fg.shape[1]) | |
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2 | |
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0 | |
new_image = np.pad( | |
fg, | |
((ph0, ph1), (pw0, pw1), (0, 0)), | |
mode="constant", | |
constant_values=((0, 0), (0, 0), (0, 0)), | |
) | |
# compute padding according to the ratio | |
new_size = int(new_image.shape[0] / ratio) | |
# pad to size, double side | |
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2 | |
ph1, pw1 = new_size - size - ph0, new_size - size - pw0 | |
new_image = np.pad( | |
new_image, | |
((ph0, ph1), (pw0, pw1), (0, 0)), | |
mode="constant", | |
constant_values=((0, 0), (0, 0), (0, 0)), | |
) | |
new_image = PIL.Image.fromarray(new_image) | |
return new_image | |
def save_video( | |
frames: List[PIL.Image.Image], | |
output_path: str, | |
fps: int = 30, | |
): | |
# use imageio to save video | |
frames = [np.array(frame) for frame in frames] | |
writer = imageio.get_writer(output_path, fps=fps) | |
for frame in frames: | |
writer.append_data(frame) | |
writer.close() | |
def to_gradio_3d_orientation(mesh): | |
mesh.apply_transform(trimesh.transformations.rotation_matrix(-np.pi/2, [1, 0, 0])) | |
mesh.apply_transform(trimesh.transformations.rotation_matrix(np.pi/2, [0, 1, 0])) | |
return mesh | |