Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,405 Bytes
2ec72fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os, logging, time, argparse, random, tempfile, rembg
import gradio as gr
import numpy as np
import torch
from PIL import Image
from functools import partial
from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
from src.scheduler_perflow import PeRFlowScheduler
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
def merge_delta_weights_into_unet(pipe, delta_weights, org_alpha = 1.0):
unet_weights = pipe.unet.state_dict()
for key in delta_weights.keys():
dtype = unet_weights[key].dtype
try:
unet_weights[key] = org_alpha * unet_weights[key].to(dtype=delta_weights[key].dtype) + delta_weights[key].to(device=unet_weights[key].device)
except:
unet_weights[key] = unet_weights[key].to(dtype=delta_weights[key].dtype)
unet_weights[key] = unet_weights[key].to(dtype)
pipe.unet.load_state_dict(unet_weights, strict=True)
return pipe
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
### TripoSR
model = TSR.from_pretrained(
"stabilityai/TripoSR",
config_name="config.yaml",
weight_name="model.ckpt",
)
# adjust the chunk size to balance between speed and memory usage
model.renderer.set_chunk_size(8192)
model.to(device)
### PeRFlow-T2I
# pipe_t2i = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-8", torch_dtype=torch.float16, safety_checker=None)
pipe_t2i = StableDiffusionPipeline.from_pretrained("stablediffusionapi/disney-pixar-cartoon", torch_dtype=torch.float16, safety_checker=None)
delta_weights = UNet2DConditionModel.from_pretrained("hansyan/piecewise-rectified-flow-delta-weights", torch_dtype=torch.float16, variant="v0-1",).state_dict()
pipe_t2i = merge_delta_weights_into_unet(pipe_t2i, delta_weights)
pipe_t2i.scheduler = PeRFlowScheduler.from_config(pipe_t2i.scheduler.config, prediction_type="epsilon", num_time_windows=4)
pipe_t2i.to('cuda:0', torch.float16)
### gradio
rembg_session = rembg.new_session()
def generate(text, seed):
def fill_background(image):
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
setup_seed(int(seed))
# text = text
samples = pipe_t2i(
prompt = [text],
negative_prompt = ["distorted, blur, low-quality, haze, out of focus"],
height = 512,
width = 512,
# num_inference_steps = 4,
# guidance_scale = 4.5,
num_inference_steps = 6,
guidance_scale = 7,
output_type = 'pt',
).images
samples = torch.nn.functional.interpolate(samples, size=768, mode='bilinear')
samples = samples.squeeze(0).permute(1, 2, 0).cpu().numpy()*255.
samples = samples.astype(np.uint8)
samples = Image.fromarray(samples[:, :, :3])
image = remove_background(samples, rembg_session)
image = resize_foreground(image, 0.85)
image = fill_background(image)
return image
def render(image, mc_resolution=256, formats=["obj"]):
scene_codes = model(image, device=device)
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
mesh = to_gradio_3d_orientation(mesh)
rv = []
for format in formats:
mesh_path = tempfile.NamedTemporaryFile(suffix=f".{format}", delete=False)
mesh.export(mesh_path.name)
rv.append(mesh_path.name)
return rv[0]
# warm up
_ = generate("a bird", 42)
# layout
css = """
h1 {
text-align: center;
display:block;
}
h2 {
text-align: center;
display:block;
}
h3 {
text-align: center;
display:block;
}
"""
with gr.Blocks(title="TripoSR", css=css) as interface:
gr.Markdown(
"""
# Instant Text-to-3D Mesh Demo
### [PeRFlow](https://github.com/magic-research/piecewise-rectified-flow)-T2I + [TripoSR](https://github.com/VAST-AI-Research/TripoSR)
Two-stage synthesis: 1) generating images by PeRFlow-T2I with 6-step inference; 2) rendering 3D assests.
"""
)
with gr.Column():
with gr.Row():
output_image = gr.Image(label='Generated Image', height=384, width=384)
output_model_obj = gr.Model3D(
label="Output 3D Model (OBJ Format)",
interactive=False,
height=384, width=384,
)
with gr.Row():
textbox = gr.Textbox(label="Input Prompt", value="a colorful bird")
seed = gr.Textbox(label="Random Seed", value=42)
# activate
textbox.submit(
fn=generate,
inputs=[textbox, seed],
outputs=[output_image],
).success(
fn=render,
inputs=[output_image],
outputs=[output_model_obj],
)
seed.submit(
fn=generate,
inputs=[textbox, seed],
outputs=[output_image],
).success(
fn=render,
inputs=[output_image],
outputs=[output_model_obj],
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--username', type=str, default=None, help='Username for authentication')
parser.add_argument('--password', type=str, default=None, help='Password for authentication')
parser.add_argument('--port', type=int, default=7860, help='Port to run the server listener on')
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
parser.add_argument("--queuesize", type=int, default=1, help="launch gradio queue max_size")
args = parser.parse_args()
interface.queue(max_size=args.queuesize)
interface.launch(
auth=(args.username, args.password) if (args.username and args.password) else None,
share=args.share,
server_name="0.0.0.0" if args.listen else None,
server_port=args.port
)
|