Spaces:
Build error
Build error
Update utils/functions.py
Browse files- utils/functions.py +522 -0
utils/functions.py
CHANGED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import datetime
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import platform
|
7 |
+
import subprocess
|
8 |
+
import time
|
9 |
+
from pathlib import Path
|
10 |
+
import re
|
11 |
+
import glob
|
12 |
+
import random
|
13 |
+
import cv2
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import torchvision
|
17 |
+
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
def git_describe(path=Path(__file__).parent): # path must be a directory
|
22 |
+
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
23 |
+
s = f'git -C {path} describe --tags --long --always'
|
24 |
+
try:
|
25 |
+
return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
|
26 |
+
except subprocess.CalledProcessError as e:
|
27 |
+
return '' # not a git repository
|
28 |
+
|
29 |
+
def date_modified(path=__file__):
|
30 |
+
# return human-readable file modification date, i.e. '2021-3-26'
|
31 |
+
t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
|
32 |
+
return f'{t.year}-{t.month}-{t.day}'
|
33 |
+
|
34 |
+
def select_device(device='', batch_size=None):
|
35 |
+
# device = 'cpu' or '0' or '0,1,2,3'
|
36 |
+
s = f'YOLOPv2 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
|
37 |
+
cpu = device.lower() == 'cpu'
|
38 |
+
if cpu:
|
39 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
40 |
+
elif device: # non-cpu device requested
|
41 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
|
42 |
+
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
|
43 |
+
|
44 |
+
cuda = not cpu and torch.cuda.is_available()
|
45 |
+
if cuda:
|
46 |
+
n = torch.cuda.device_count()
|
47 |
+
if n > 1 and batch_size: # check that batch_size is compatible with device_count
|
48 |
+
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
49 |
+
space = ' ' * len(s)
|
50 |
+
for i, d in enumerate(device.split(',') if device else range(n)):
|
51 |
+
p = torch.cuda.get_device_properties(i)
|
52 |
+
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
|
53 |
+
else:
|
54 |
+
s += 'CPU\n'
|
55 |
+
|
56 |
+
logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
|
57 |
+
return torch.device('cuda:0' if cuda else 'cpu')
|
58 |
+
|
59 |
+
|
60 |
+
def time_synchronized():
|
61 |
+
# pytorch-accurate time
|
62 |
+
if torch.cuda.is_available():
|
63 |
+
torch.cuda.synchronize()
|
64 |
+
return time.time()
|
65 |
+
|
66 |
+
def plot_one_box(x, img, color=None, label=None, line_thickness=3):
|
67 |
+
# Plots one bounding box on image img
|
68 |
+
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
|
69 |
+
color = color or [random.randint(0, 255) for _ in range(3)]
|
70 |
+
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
71 |
+
cv2.rectangle(img, c1, c2, [0,255,255], thickness=2, lineType=cv2.LINE_AA)
|
72 |
+
if label:
|
73 |
+
tf = max(tl - 1, 1) # font thickness
|
74 |
+
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
75 |
+
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
76 |
+
|
77 |
+
class SegmentationMetric(object):
|
78 |
+
'''
|
79 |
+
imgLabel [batch_size, height(144), width(256)]
|
80 |
+
confusionMatrix [[0(TN),1(FP)],
|
81 |
+
[2(FN),3(TP)]]
|
82 |
+
'''
|
83 |
+
def __init__(self, numClass):
|
84 |
+
self.numClass = numClass
|
85 |
+
self.confusionMatrix = np.zeros((self.numClass,)*2)
|
86 |
+
|
87 |
+
def pixelAccuracy(self):
|
88 |
+
# return all class overall pixel accuracy
|
89 |
+
# acc = (TP + TN) / (TP + TN + FP + TN)
|
90 |
+
acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()
|
91 |
+
return acc
|
92 |
+
|
93 |
+
def lineAccuracy(self):
|
94 |
+
Acc = np.diag(self.confusionMatrix) / (self.confusionMatrix.sum(axis=1) + 1e-12)
|
95 |
+
return Acc[1]
|
96 |
+
|
97 |
+
def classPixelAccuracy(self):
|
98 |
+
# return each category pixel accuracy(A more accurate way to call it precision)
|
99 |
+
# acc = (TP) / TP + FP
|
100 |
+
classAcc = np.diag(self.confusionMatrix) / (self.confusionMatrix.sum(axis=0) + 1e-12)
|
101 |
+
return classAcc
|
102 |
+
|
103 |
+
def meanPixelAccuracy(self):
|
104 |
+
classAcc = self.classPixelAccuracy()
|
105 |
+
meanAcc = np.nanmean(classAcc)
|
106 |
+
return meanAcc
|
107 |
+
|
108 |
+
def meanIntersectionOverUnion(self):
|
109 |
+
# Intersection = TP Union = TP + FP + FN
|
110 |
+
# IoU = TP / (TP + FP + FN)
|
111 |
+
intersection = np.diag(self.confusionMatrix)
|
112 |
+
union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(self.confusionMatrix)
|
113 |
+
IoU = intersection / union
|
114 |
+
IoU[np.isnan(IoU)] = 0
|
115 |
+
mIoU = np.nanmean(IoU)
|
116 |
+
return mIoU
|
117 |
+
|
118 |
+
def IntersectionOverUnion(self):
|
119 |
+
intersection = np.diag(self.confusionMatrix)
|
120 |
+
union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(self.confusionMatrix)
|
121 |
+
IoU = intersection / union
|
122 |
+
IoU[np.isnan(IoU)] = 0
|
123 |
+
return IoU[1]
|
124 |
+
|
125 |
+
def genConfusionMatrix(self, imgPredict, imgLabel):
|
126 |
+
# remove classes from unlabeled pixels in gt image and predict
|
127 |
+
# print(imgLabel.shape)
|
128 |
+
mask = (imgLabel >= 0) & (imgLabel < self.numClass)
|
129 |
+
label = self.numClass * imgLabel[mask] + imgPredict[mask]
|
130 |
+
count = np.bincount(label, minlength=self.numClass**2)
|
131 |
+
confusionMatrix = count.reshape(self.numClass, self.numClass)
|
132 |
+
return confusionMatrix
|
133 |
+
|
134 |
+
def Frequency_Weighted_Intersection_over_Union(self):
|
135 |
+
# FWIOU = [(TP+FN)/(TP+FP+TN+FN)] *[TP / (TP + FP + FN)]
|
136 |
+
freq = np.sum(self.confusionMatrix, axis=1) / np.sum(self.confusionMatrix)
|
137 |
+
iu = np.diag(self.confusionMatrix) / (
|
138 |
+
np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) -
|
139 |
+
np.diag(self.confusionMatrix))
|
140 |
+
FWIoU = (freq[freq > 0] * iu[freq > 0]).sum()
|
141 |
+
return FWIoU
|
142 |
+
|
143 |
+
|
144 |
+
def addBatch(self, imgPredict, imgLabel):
|
145 |
+
assert imgPredict.shape == imgLabel.shape
|
146 |
+
self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)
|
147 |
+
|
148 |
+
def reset(self):
|
149 |
+
self.confusionMatrix = np.zeros((self.numClass, self.numClass))
|
150 |
+
|
151 |
+
class AverageMeter(object):
|
152 |
+
"""Computes and stores the average and current value"""
|
153 |
+
def __init__(self):
|
154 |
+
self.reset()
|
155 |
+
|
156 |
+
def reset(self):
|
157 |
+
self.val = 0
|
158 |
+
self.avg = 0
|
159 |
+
self.sum = 0
|
160 |
+
self.count = 0
|
161 |
+
|
162 |
+
def update(self, val, n=1):
|
163 |
+
self.val = val
|
164 |
+
self.sum += val * n
|
165 |
+
self.count += n
|
166 |
+
self.avg = self.sum / self.count if self.count != 0 else 0
|
167 |
+
|
168 |
+
def _make_grid(nx=20, ny=20):
|
169 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
170 |
+
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
171 |
+
|
172 |
+
def split_for_trace_model(pred = None, anchor_grid = None):
|
173 |
+
z = []
|
174 |
+
st = [8,16,32]
|
175 |
+
for i in range(3):
|
176 |
+
bs, _, ny, nx = pred[i].shape
|
177 |
+
pred[i] = pred[i].view(bs, 3, 85, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
178 |
+
y = pred[i].sigmoid()
|
179 |
+
gr = _make_grid(nx, ny).to(pred[i].device)
|
180 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + gr) * st[i] # xy
|
181 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * anchor_grid[i] # wh
|
182 |
+
z.append(y.view(bs, -1, 85))
|
183 |
+
pred = torch.cat(z, 1)
|
184 |
+
return pred
|
185 |
+
|
186 |
+
def show_seg_result(img, result, palette=None,is_demo=False):
|
187 |
+
|
188 |
+
if palette is None:
|
189 |
+
palette = np.random.randint(
|
190 |
+
0, 255, size=(3, 3))
|
191 |
+
palette[0] = [0, 0, 0]
|
192 |
+
palette[1] = [0, 255, 0]
|
193 |
+
palette[2] = [255, 0, 0]
|
194 |
+
palette = np.array(palette)
|
195 |
+
assert palette.shape[0] == 3 # len(classes)
|
196 |
+
assert palette.shape[1] == 3
|
197 |
+
assert len(palette.shape) == 2
|
198 |
+
|
199 |
+
if not is_demo:
|
200 |
+
color_seg = np.zeros((result.shape[0], result.shape[1], 3), dtype=np.uint8)
|
201 |
+
for label, color in enumerate(palette):
|
202 |
+
color_seg[result == label, :] = color
|
203 |
+
else:
|
204 |
+
color_area = np.zeros((result[0].shape[0], result[0].shape[1], 3), dtype=np.uint8)
|
205 |
+
|
206 |
+
color_area[result[0] == 1] = [0, 255, 0]
|
207 |
+
color_area[result[1] ==1] = [255, 0, 0]
|
208 |
+
color_seg = color_area
|
209 |
+
|
210 |
+
# convert to BGR
|
211 |
+
color_seg = color_seg[..., ::-1]
|
212 |
+
# print(color_seg.shape)
|
213 |
+
color_mask = np.mean(color_seg, 2)
|
214 |
+
img[color_mask != 0] = img[color_mask != 0] * 0.5 + color_seg[color_mask != 0] * 0.5
|
215 |
+
# img = img * 0.5 + color_seg * 0.5
|
216 |
+
#img = img.astype(np.uint8)
|
217 |
+
#img = cv2.resize(img, (1280,720), interpolation=cv2.INTER_LINEAR)
|
218 |
+
return
|
219 |
+
|
220 |
+
|
221 |
+
def increment_path(path, exist_ok=True, sep=''):
|
222 |
+
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
|
223 |
+
path = Path(path) # os-agnostic
|
224 |
+
if (path.exists() and exist_ok) or (not path.exists()):
|
225 |
+
return str(path)
|
226 |
+
else:
|
227 |
+
dirs = glob.glob(f"{path}{sep}*") # similar paths
|
228 |
+
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
|
229 |
+
i = [int(m.groups()[0]) for m in matches if m] # indices
|
230 |
+
n = max(i) + 1 if i else 2 # increment number
|
231 |
+
return f"{path}{sep}{n}" # update path
|
232 |
+
|
233 |
+
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
234 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
235 |
+
if ratio_pad is None: # calculate from img0_shape
|
236 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
237 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
238 |
+
else:
|
239 |
+
gain = ratio_pad[0][0]
|
240 |
+
pad = ratio_pad[1]
|
241 |
+
|
242 |
+
coords[:, [0, 2]] -= pad[0] # x padding
|
243 |
+
coords[:, [1, 3]] -= pad[1] # y padding
|
244 |
+
coords[:, :4] /= gain
|
245 |
+
clip_coords(coords, img0_shape)
|
246 |
+
return coords
|
247 |
+
|
248 |
+
|
249 |
+
def clip_coords(boxes, img_shape):
|
250 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
251 |
+
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
252 |
+
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
253 |
+
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
254 |
+
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
255 |
+
|
256 |
+
def set_logging(rank=-1):
|
257 |
+
logging.basicConfig(
|
258 |
+
format="%(message)s",
|
259 |
+
level=logging.INFO if rank in [-1, 0] else logging.WARN)
|
260 |
+
|
261 |
+
def xywh2xyxy(x):
|
262 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
263 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
264 |
+
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
265 |
+
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
266 |
+
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
267 |
+
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
268 |
+
return y
|
269 |
+
|
270 |
+
def xyxy2xywh(x):
|
271 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
272 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
273 |
+
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
274 |
+
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
275 |
+
y[:, 2] = x[:, 2] - x[:, 0] # width
|
276 |
+
y[:, 3] = x[:, 3] - x[:, 1] # height
|
277 |
+
return y
|
278 |
+
|
279 |
+
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
|
280 |
+
labels=()):
|
281 |
+
"""Runs Non-Maximum Suppression (NMS) on inference results
|
282 |
+
Returns:
|
283 |
+
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
284 |
+
"""
|
285 |
+
|
286 |
+
nc = prediction.shape[2] - 5 # number of classes
|
287 |
+
xc = prediction[..., 4] > conf_thres # candidates
|
288 |
+
|
289 |
+
# Settings
|
290 |
+
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
291 |
+
max_det = 300 # maximum number of detections per image
|
292 |
+
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
293 |
+
time_limit = 10.0 # seconds to quit after
|
294 |
+
redundant = True # require redundant detections
|
295 |
+
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
296 |
+
merge = False # use merge-NMS
|
297 |
+
|
298 |
+
t = time.time()
|
299 |
+
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
|
300 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
301 |
+
# Apply constraints
|
302 |
+
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
303 |
+
x = x[xc[xi]] # confidence
|
304 |
+
|
305 |
+
# Cat apriori labels if autolabelling
|
306 |
+
if labels and len(labels[xi]):
|
307 |
+
l = labels[xi]
|
308 |
+
v = torch.zeros((len(l), nc + 5), device=x.device)
|
309 |
+
v[:, :4] = l[:, 1:5] # box
|
310 |
+
v[:, 4] = 1.0 # conf
|
311 |
+
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
|
312 |
+
x = torch.cat((x, v), 0)
|
313 |
+
|
314 |
+
# If none remain process next image
|
315 |
+
if not x.shape[0]:
|
316 |
+
continue
|
317 |
+
|
318 |
+
# Compute conf
|
319 |
+
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
320 |
+
|
321 |
+
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
322 |
+
box = xywh2xyxy(x[:, :4])
|
323 |
+
|
324 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
325 |
+
if multi_label:
|
326 |
+
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
327 |
+
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
328 |
+
else: # best class only
|
329 |
+
conf, j = x[:, 5:].max(1, keepdim=True)
|
330 |
+
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
331 |
+
|
332 |
+
# Filter by class
|
333 |
+
if classes is not None:
|
334 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
335 |
+
|
336 |
+
# Apply finite constraint
|
337 |
+
# if not torch.isfinite(x).all():
|
338 |
+
# x = x[torch.isfinite(x).all(1)]
|
339 |
+
|
340 |
+
# Check shape
|
341 |
+
n = x.shape[0] # number of boxes
|
342 |
+
if not n: # no boxes
|
343 |
+
continue
|
344 |
+
elif n > max_nms: # excess boxes
|
345 |
+
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
346 |
+
|
347 |
+
# Batched NMS
|
348 |
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
349 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
350 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
351 |
+
if i.shape[0] > max_det: # limit detections
|
352 |
+
i = i[:max_det]
|
353 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
354 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
355 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
356 |
+
weights = iou * scores[None] # box weights
|
357 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
358 |
+
if redundant:
|
359 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
360 |
+
|
361 |
+
output[xi] = x[i]
|
362 |
+
if (time.time() - t) > time_limit:
|
363 |
+
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
364 |
+
break # time limit exceeded
|
365 |
+
|
366 |
+
return output
|
367 |
+
|
368 |
+
def box_iou(box1, box2):
|
369 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
370 |
+
"""
|
371 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
372 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
373 |
+
Arguments:
|
374 |
+
box1 (Tensor[N, 4])
|
375 |
+
box2 (Tensor[M, 4])
|
376 |
+
Returns:
|
377 |
+
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
378 |
+
IoU values for every element in boxes1 and boxes2
|
379 |
+
"""
|
380 |
+
|
381 |
+
def box_area(box):
|
382 |
+
# box = 4xn
|
383 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
384 |
+
|
385 |
+
area1 = box_area(box1.T)
|
386 |
+
area2 = box_area(box2.T)
|
387 |
+
|
388 |
+
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
389 |
+
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
390 |
+
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
|
391 |
+
|
392 |
+
class LoadImages: # for inference
|
393 |
+
def __init__(self, path, img_size=640, stride=32):
|
394 |
+
p = str(Path(path).absolute()) # os-agnostic absolute path
|
395 |
+
if '*' in p:
|
396 |
+
files = sorted(glob.glob(p, recursive=True)) # glob
|
397 |
+
elif os.path.isdir(p):
|
398 |
+
files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
|
399 |
+
elif os.path.isfile(p):
|
400 |
+
files = [p] # files
|
401 |
+
else:
|
402 |
+
raise Exception(f'ERROR: {p} does not exist')
|
403 |
+
|
404 |
+
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
|
405 |
+
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
|
406 |
+
images = [x for x in files if x.split('.')[-1].lower() in img_formats]
|
407 |
+
videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
|
408 |
+
ni, nv = len(images), len(videos)
|
409 |
+
|
410 |
+
self.img_size = img_size
|
411 |
+
self.stride = stride
|
412 |
+
self.files = images + videos
|
413 |
+
self.nf = ni + nv # number of files
|
414 |
+
self.video_flag = [False] * ni + [True] * nv
|
415 |
+
self.mode = 'image'
|
416 |
+
if any(videos):
|
417 |
+
self.new_video(videos[0]) # new video
|
418 |
+
else:
|
419 |
+
self.cap = None
|
420 |
+
assert self.nf > 0, f'No images or videos found in {p}. ' \
|
421 |
+
f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
|
422 |
+
|
423 |
+
def __iter__(self):
|
424 |
+
self.count = 0
|
425 |
+
return self
|
426 |
+
|
427 |
+
def __next__(self):
|
428 |
+
if self.count == self.nf:
|
429 |
+
raise StopIteration
|
430 |
+
path = self.files[self.count]
|
431 |
+
|
432 |
+
if self.video_flag[self.count]:
|
433 |
+
# Read video
|
434 |
+
self.mode = 'video'
|
435 |
+
ret_val, img0 = self.cap.read()
|
436 |
+
if not ret_val:
|
437 |
+
self.count += 1
|
438 |
+
self.cap.release()
|
439 |
+
if self.count == self.nf: # last video
|
440 |
+
raise StopIteration
|
441 |
+
else:
|
442 |
+
path = self.files[self.count]
|
443 |
+
self.new_video(path)
|
444 |
+
ret_val, img0 = self.cap.read()
|
445 |
+
|
446 |
+
self.frame += 1
|
447 |
+
print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')
|
448 |
+
|
449 |
+
else:
|
450 |
+
# Read image
|
451 |
+
self.count += 1
|
452 |
+
img0 = cv2.imread(path) # BGR
|
453 |
+
assert img0 is not None, 'Image Not Found ' + path
|
454 |
+
#print(f'image {self.count}/{self.nf} {path}: ', end='')
|
455 |
+
|
456 |
+
# Padded resize
|
457 |
+
img0 = cv2.resize(img0, (1280,720), interpolation=cv2.INTER_LINEAR)
|
458 |
+
img = letterbox(img0, self.img_size, stride=self.stride)[0]
|
459 |
+
|
460 |
+
# Convert
|
461 |
+
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
462 |
+
img = np.ascontiguousarray(img)
|
463 |
+
|
464 |
+
return path, img, img0, self.cap
|
465 |
+
|
466 |
+
def new_video(self, path):
|
467 |
+
self.frame = 0
|
468 |
+
self.cap = cv2.VideoCapture(path)
|
469 |
+
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
470 |
+
|
471 |
+
def __len__(self):
|
472 |
+
return self.nf # number of files
|
473 |
+
|
474 |
+
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
475 |
+
# Resize and pad image while meeting stride-multiple constraints
|
476 |
+
shape = img.shape[:2] # current shape [height, width]
|
477 |
+
if isinstance(new_shape, int):
|
478 |
+
new_shape = (new_shape, new_shape)
|
479 |
+
#print(sem_img.shape)
|
480 |
+
# Scale ratio (new / old)
|
481 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
482 |
+
|
483 |
+
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
484 |
+
r = min(r, 1.0)
|
485 |
+
|
486 |
+
# Compute padding
|
487 |
+
ratio = r, r # width, height ratios
|
488 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
489 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
490 |
+
if auto: # minimum rectangle
|
491 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
492 |
+
elif scaleFill: # stretch
|
493 |
+
dw, dh = 0.0, 0.0
|
494 |
+
new_unpad = (new_shape[1], new_shape[0])
|
495 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
496 |
+
|
497 |
+
dw /= 2 # divide padding into 2 sides
|
498 |
+
dh /= 2
|
499 |
+
|
500 |
+
if shape[::-1] != new_unpad: # resize
|
501 |
+
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
502 |
+
|
503 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
504 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
505 |
+
|
506 |
+
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
507 |
+
|
508 |
+
return img, ratio, (dw, dh)
|
509 |
+
|
510 |
+
def driving_area_mask(seg = None):
|
511 |
+
da_predict = seg[:, :, 12:372,:]
|
512 |
+
da_seg_mask = torch.nn.functional.interpolate(da_predict, scale_factor=2, mode='bilinear')
|
513 |
+
_, da_seg_mask = torch.max(da_seg_mask, 1)
|
514 |
+
da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy()
|
515 |
+
return da_seg_mask
|
516 |
+
|
517 |
+
def lane_line_mask(ll = None):
|
518 |
+
ll_predict = ll[:, :, 12:372,:]
|
519 |
+
ll_seg_mask = torch.nn.functional.interpolate(ll_predict, scale_factor=2, mode='bilinear')
|
520 |
+
ll_seg_mask = torch.round(ll_seg_mask).squeeze(1)
|
521 |
+
ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy()
|
522 |
+
return ll_seg_mask
|