hank1996 commited on
Commit
d8ca621
·
1 Parent(s): 46ef630

Create new file

Browse files
Files changed (1) hide show
  1. utils/torch_utils.py +374 -0
utils/torch_utils.py ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ import datetime
4
+ import logging
5
+ import math
6
+ import os
7
+ import platform
8
+ import subprocess
9
+ import time
10
+ from contextlib import contextmanager
11
+ from copy import deepcopy
12
+ from pathlib import Path
13
+
14
+ import torch
15
+ import torch.backends.cudnn as cudnn
16
+ import torch.nn as nn
17
+ import torch.nn.functional as F
18
+ import torchvision
19
+
20
+ try:
21
+ import thop # for FLOPS computation
22
+ except ImportError:
23
+ thop = None
24
+ logger = logging.getLogger(__name__)
25
+
26
+
27
+ @contextmanager
28
+ def torch_distributed_zero_first(local_rank: int):
29
+ """
30
+ Decorator to make all processes in distributed training wait for each local_master to do something.
31
+ """
32
+ if local_rank not in [-1, 0]:
33
+ torch.distributed.barrier()
34
+ yield
35
+ if local_rank == 0:
36
+ torch.distributed.barrier()
37
+
38
+
39
+ def init_torch_seeds(seed=0):
40
+ # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
41
+ torch.manual_seed(seed)
42
+ if seed == 0: # slower, more reproducible
43
+ cudnn.benchmark, cudnn.deterministic = False, True
44
+ else: # faster, less reproducible
45
+ cudnn.benchmark, cudnn.deterministic = True, False
46
+
47
+
48
+ def date_modified(path=__file__):
49
+ # return human-readable file modification date, i.e. '2021-3-26'
50
+ t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
51
+ return f'{t.year}-{t.month}-{t.day}'
52
+
53
+
54
+ def git_describe(path=Path(__file__).parent): # path must be a directory
55
+ # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
56
+ s = f'git -C {path} describe --tags --long --always'
57
+ try:
58
+ return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
59
+ except subprocess.CalledProcessError as e:
60
+ return '' # not a git repository
61
+
62
+
63
+ def select_device(device='', batch_size=None):
64
+ # device = 'cpu' or '0' or '0,1,2,3'
65
+ s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
66
+ cpu = device.lower() == 'cpu'
67
+ if cpu:
68
+ os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
69
+ elif device: # non-cpu device requested
70
+ os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
71
+ assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
72
+
73
+ cuda = not cpu and torch.cuda.is_available()
74
+ if cuda:
75
+ n = torch.cuda.device_count()
76
+ if n > 1 and batch_size: # check that batch_size is compatible with device_count
77
+ assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
78
+ space = ' ' * len(s)
79
+ for i, d in enumerate(device.split(',') if device else range(n)):
80
+ p = torch.cuda.get_device_properties(i)
81
+ s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
82
+ else:
83
+ s += 'CPU\n'
84
+
85
+ logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
86
+ return torch.device('cuda:0' if cuda else 'cpu')
87
+
88
+
89
+ def time_synchronized():
90
+ # pytorch-accurate time
91
+ if torch.cuda.is_available():
92
+ torch.cuda.synchronize()
93
+ return time.time()
94
+
95
+
96
+ def profile(x, ops, n=100, device=None):
97
+ # profile a pytorch module or list of modules. Example usage:
98
+ # x = torch.randn(16, 3, 640, 640) # input
99
+ # m1 = lambda x: x * torch.sigmoid(x)
100
+ # m2 = nn.SiLU()
101
+ # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
102
+
103
+ device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
104
+ x = x.to(device)
105
+ x.requires_grad = True
106
+ print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
107
+ print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
108
+ for m in ops if isinstance(ops, list) else [ops]:
109
+ m = m.to(device) if hasattr(m, 'to') else m # device
110
+ m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
111
+ dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
112
+ try:
113
+ flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
114
+ except:
115
+ flops = 0
116
+
117
+ for _ in range(n):
118
+ t[0] = time_synchronized()
119
+ y = m(x)
120
+ t[1] = time_synchronized()
121
+ try:
122
+ _ = y.sum().backward()
123
+ t[2] = time_synchronized()
124
+ except: # no backward method
125
+ t[2] = float('nan')
126
+ dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
127
+ dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
128
+
129
+ s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
130
+ s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
131
+ p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
132
+ print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
133
+
134
+
135
+ def is_parallel(model):
136
+ return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
137
+
138
+
139
+ def intersect_dicts(da, db, exclude=()):
140
+ # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
141
+ return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
142
+
143
+
144
+ def initialize_weights(model):
145
+ for m in model.modules():
146
+ t = type(m)
147
+ if t is nn.Conv2d:
148
+ pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
149
+ elif t is nn.BatchNorm2d:
150
+ m.eps = 1e-3
151
+ m.momentum = 0.03
152
+ elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
153
+ m.inplace = True
154
+
155
+
156
+ def find_modules(model, mclass=nn.Conv2d):
157
+ # Finds layer indices matching module class 'mclass'
158
+ return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
159
+
160
+
161
+ def sparsity(model):
162
+ # Return global model sparsity
163
+ a, b = 0., 0.
164
+ for p in model.parameters():
165
+ a += p.numel()
166
+ b += (p == 0).sum()
167
+ return b / a
168
+
169
+
170
+ def prune(model, amount=0.3):
171
+ # Prune model to requested global sparsity
172
+ import torch.nn.utils.prune as prune
173
+ print('Pruning model... ', end='')
174
+ for name, m in model.named_modules():
175
+ if isinstance(m, nn.Conv2d):
176
+ prune.l1_unstructured(m, name='weight', amount=amount) # prune
177
+ prune.remove(m, 'weight') # make permanent
178
+ print(' %.3g global sparsity' % sparsity(model))
179
+
180
+
181
+ def fuse_conv_and_bn(conv, bn):
182
+ # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
183
+ fusedconv = nn.Conv2d(conv.in_channels,
184
+ conv.out_channels,
185
+ kernel_size=conv.kernel_size,
186
+ stride=conv.stride,
187
+ padding=conv.padding,
188
+ groups=conv.groups,
189
+ bias=True).requires_grad_(False).to(conv.weight.device)
190
+
191
+ # prepare filters
192
+ w_conv = conv.weight.clone().view(conv.out_channels, -1)
193
+ w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
194
+ fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
195
+
196
+ # prepare spatial bias
197
+ b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
198
+ b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
199
+ fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
200
+
201
+ return fusedconv
202
+
203
+
204
+ def model_info(model, verbose=False, img_size=640):
205
+ # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
206
+ n_p = sum(x.numel() for x in model.parameters()) # number parameters
207
+ n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
208
+ if verbose:
209
+ print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
210
+ for i, (name, p) in enumerate(model.named_parameters()):
211
+ name = name.replace('module_list.', '')
212
+ print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
213
+ (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
214
+
215
+ try: # FLOPS
216
+ from thop import profile
217
+ stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
218
+ img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
219
+ flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
220
+ img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
221
+ fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
222
+ except (ImportError, Exception):
223
+ fs = ''
224
+
225
+ logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
226
+
227
+
228
+ def load_classifier(name='resnet101', n=2):
229
+ # Loads a pretrained model reshaped to n-class output
230
+ model = torchvision.models.__dict__[name](pretrained=True)
231
+
232
+ # ResNet model properties
233
+ # input_size = [3, 224, 224]
234
+ # input_space = 'RGB'
235
+ # input_range = [0, 1]
236
+ # mean = [0.485, 0.456, 0.406]
237
+ # std = [0.229, 0.224, 0.225]
238
+
239
+ # Reshape output to n classes
240
+ filters = model.fc.weight.shape[1]
241
+ model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
242
+ model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
243
+ model.fc.out_features = n
244
+ return model
245
+
246
+
247
+ def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
248
+ # scales img(bs,3,y,x) by ratio constrained to gs-multiple
249
+ if ratio == 1.0:
250
+ return img
251
+ else:
252
+ h, w = img.shape[2:]
253
+ s = (int(h * ratio), int(w * ratio)) # new size
254
+ img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
255
+ if not same_shape: # pad/crop img
256
+ h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
257
+ return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
258
+
259
+
260
+ def copy_attr(a, b, include=(), exclude=()):
261
+ # Copy attributes from b to a, options to only include [...] and to exclude [...]
262
+ for k, v in b.__dict__.items():
263
+ if (len(include) and k not in include) or k.startswith('_') or k in exclude:
264
+ continue
265
+ else:
266
+ setattr(a, k, v)
267
+
268
+
269
+ class ModelEMA:
270
+ """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
271
+ Keep a moving average of everything in the model state_dict (parameters and buffers).
272
+ This is intended to allow functionality like
273
+ https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
274
+ A smoothed version of the weights is necessary for some training schemes to perform well.
275
+ This class is sensitive where it is initialized in the sequence of model init,
276
+ GPU assignment and distributed training wrappers.
277
+ """
278
+
279
+ def __init__(self, model, decay=0.9999, updates=0):
280
+ # Create EMA
281
+ self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
282
+ # if next(model.parameters()).device.type != 'cpu':
283
+ # self.ema.half() # FP16 EMA
284
+ self.updates = updates # number of EMA updates
285
+ self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
286
+ for p in self.ema.parameters():
287
+ p.requires_grad_(False)
288
+
289
+ def update(self, model):
290
+ # Update EMA parameters
291
+ with torch.no_grad():
292
+ self.updates += 1
293
+ d = self.decay(self.updates)
294
+
295
+ msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
296
+ for k, v in self.ema.state_dict().items():
297
+ if v.dtype.is_floating_point:
298
+ v *= d
299
+ v += (1. - d) * msd[k].detach()
300
+
301
+ def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
302
+ # Update EMA attributes
303
+ copy_attr(self.ema, model, include, exclude)
304
+
305
+
306
+ class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
307
+ def _check_input_dim(self, input):
308
+ # The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
309
+ # is this method that is overwritten by the sub-class
310
+ # This original goal of this method was for tensor sanity checks
311
+ # If you're ok bypassing those sanity checks (eg. if you trust your inference
312
+ # to provide the right dimensional inputs), then you can just use this method
313
+ # for easy conversion from SyncBatchNorm
314
+ # (unfortunately, SyncBatchNorm does not store the original class - if it did
315
+ # we could return the one that was originally created)
316
+ return
317
+
318
+ def revert_sync_batchnorm(module):
319
+ # this is very similar to the function that it is trying to revert:
320
+ # https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679
321
+ module_output = module
322
+ if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
323
+ new_cls = BatchNormXd
324
+ module_output = BatchNormXd(module.num_features,
325
+ module.eps, module.momentum,
326
+ module.affine,
327
+ module.track_running_stats)
328
+ if module.affine:
329
+ with torch.no_grad():
330
+ module_output.weight = module.weight
331
+ module_output.bias = module.bias
332
+ module_output.running_mean = module.running_mean
333
+ module_output.running_var = module.running_var
334
+ module_output.num_batches_tracked = module.num_batches_tracked
335
+ if hasattr(module, "qconfig"):
336
+ module_output.qconfig = module.qconfig
337
+ for name, child in module.named_children():
338
+ module_output.add_module(name, revert_sync_batchnorm(child))
339
+ del module
340
+ return module_output
341
+
342
+
343
+ class TracedModel(nn.Module):
344
+
345
+ def __init__(self, model=None, device=None, img_size=(640,640)):
346
+ super(TracedModel, self).__init__()
347
+
348
+ print(" Convert model to Traced-model... ")
349
+ self.stride = model.stride
350
+ self.names = model.names
351
+ self.model = model
352
+
353
+ self.model = revert_sync_batchnorm(self.model)
354
+ self.model.to('cpu')
355
+ self.model.eval()
356
+
357
+ self.detect_layer = self.model.model[-1]
358
+ self.model.traced = True
359
+
360
+ rand_example = torch.rand(1, 3, img_size, img_size)
361
+
362
+ traced_script_module = torch.jit.trace(self.model, rand_example, strict=False)
363
+ #traced_script_module = torch.jit.script(self.model)
364
+ traced_script_module.save("traced_model.pt")
365
+ print(" traced_script_module saved! ")
366
+ self.model = traced_script_module
367
+ self.model.to(device)
368
+ self.detect_layer.to(device)
369
+ print(" model is traced! \n")
370
+
371
+ def forward(self, x, augment=False, profile=False):
372
+ out = self.model(x)
373
+ out = self.detect_layer(out)
374
+ return out