hank1996 commited on
Commit
8124fbe
·
1 Parent(s): a7a1ae5

Delete models/experimental.py

Browse files
Files changed (1) hide show
  1. models/experimental.py +0 -108
models/experimental.py DELETED
@@ -1,108 +0,0 @@
1
-
2
- import numpy as np
3
- import torch
4
- import torch.nn as nn
5
-
6
- from models.common import Conv, DWConv
7
- from utils.google_utils import attempt_download
8
-
9
-
10
- class CrossConv(nn.Module):
11
- # Cross Convolution Downsample
12
- def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13
- # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14
- super(CrossConv, self).__init__()
15
- c_ = int(c2 * e) # hidden channels
16
- self.cv1 = Conv(c1, c_, (1, k), (1, s))
17
- self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18
- self.add = shortcut and c1 == c2
19
-
20
- def forward(self, x):
21
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22
-
23
-
24
- class Sum(nn.Module):
25
- # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
26
- def __init__(self, n, weight=False): # n: number of inputs
27
- super(Sum, self).__init__()
28
- self.weight = weight # apply weights boolean
29
- self.iter = range(n - 1) # iter object
30
- if weight:
31
- self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
32
-
33
- def forward(self, x):
34
- y = x[0] # no weight
35
- if self.weight:
36
- w = torch.sigmoid(self.w) * 2
37
- for i in self.iter:
38
- y = y + x[i + 1] * w[i]
39
- else:
40
- for i in self.iter:
41
- y = y + x[i + 1]
42
- return y
43
-
44
-
45
- class MixConv2d(nn.Module):
46
- # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
47
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
48
- super(MixConv2d, self).__init__()
49
- groups = len(k)
50
- if equal_ch: # equal c_ per group
51
- i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
52
- c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
53
- else: # equal weight.numel() per group
54
- b = [c2] + [0] * groups
55
- a = np.eye(groups + 1, groups, k=-1)
56
- a -= np.roll(a, 1, axis=1)
57
- a *= np.array(k) ** 2
58
- a[0] = 1
59
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
60
-
61
- self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
62
- self.bn = nn.BatchNorm2d(c2)
63
- self.act = nn.LeakyReLU(0.1, inplace=True)
64
-
65
- def forward(self, x):
66
- return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
67
-
68
-
69
- class Ensemble(nn.ModuleList):
70
- # Ensemble of models
71
- def __init__(self):
72
- super(Ensemble, self).__init__()
73
-
74
- def forward(self, x, augment=False):
75
- y = []
76
- for module in self:
77
- y.append(module(x, augment)[0])
78
- # y = torch.stack(y).max(0)[0] # max ensemble
79
- # y = torch.stack(y).mean(0) # mean ensemble
80
- y = torch.cat(y, 1) # nms ensemble
81
- return y, None # inference, train output
82
-
83
-
84
- def attempt_load(weights, map_location=None):
85
- # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
86
- model = Ensemble()
87
- for w in weights if isinstance(weights, list) else [weights]:
88
- #attempt_download(w)
89
- ckpt = torch.load(w, map_location=map_location) # load
90
- model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
91
-
92
- # Compatibility updates
93
- for m in model.modules():
94
- if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
95
- m.inplace = True # pytorch 1.7.0 compatibility
96
- elif type(m) is nn.Upsample:
97
- m.recompute_scale_factor = None # torch 1.11.0 compatibility
98
- elif type(m) is Conv:
99
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
100
-
101
- if len(model) == 1:
102
- return model[-1] # return model
103
- else:
104
- print('Ensemble created with %s\n' % weights)
105
- for k in ['names', 'stride']:
106
- setattr(model, k, getattr(model[-1], k))
107
- return model # return ensemble
108
-