import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch from PIL import Image, ImageDraw, ImageFont device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) else: pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 3072 def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): # Append Moroccan and Amazigh art styles to the prompt style_prompt = f"{prompt}, inspired by Moroccan and Amazigh arts, traditional motifs, vibrant colors, and intricate patterns." if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=style_prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] # Convert the image to PIL format for overlaying the watermark pil_image = Image.fromarray(image) # Add watermark watermark_text = "Bibou.jpeg" font = ImageFont.truetype("arial.ttf", size=30) # Adjust font and size as needed draw = ImageDraw.Draw(pil_image) text_width, text_height = draw.textsize(watermark_text, font=font) margin = 10 opacity = 0.6 draw.text((pil_image.width - text_width - margin, pil_image.height - text_height - margin), watermark_text, font=font, fill=(255, 255, 255, int(255 * opacity))) # Convert back to numpy array for Gradio display watermarked_image = np.array(pil_image) return watermarked_image examples = [ "Sunset over the Atlas Mountains", "Traditional Amazigh jewelry under the moonlight", "Flying carpet in space", "Unicorn riding a camel in the Sahara Desert", "Moroccan souk floating in the sky", ] css=""" #col-container { margin: 0 auto; max-width: 840px; color: #003366; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # bibou.jpeg Generate Moroccan folkloric pictures, inspired by Moroccan and Amazigh arts. 🎨🎶 """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=2, ) gr.Examples( examples = examples, inputs = [prompt] ) run_button.click( fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result] ) demo.queue().launch()