Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
else: | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 3072 | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
# Append Moroccan and Amazigh art styles to the prompt | |
style_prompt = f"{prompt}, inspired by Moroccan and Amazigh arts, traditional motifs, vibrant colors, and intricate patterns." | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=style_prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
# Convert the image to PIL format for overlaying the watermark | |
pil_image = Image.fromarray(image) | |
# Add watermark | |
watermark_text = "Bibou.jpeg" | |
font = ImageFont.truetype("arial.ttf", size=30) # Adjust font and size as needed | |
draw = ImageDraw.Draw(pil_image) | |
text_width, text_height = draw.textsize(watermark_text, font=font) | |
margin = 10 | |
opacity = 0.6 | |
draw.text((pil_image.width - text_width - margin, pil_image.height - text_height - margin), watermark_text, font=font, fill=(255, 255, 255, int(255 * opacity))) | |
# Convert back to numpy array for Gradio display | |
watermarked_image = np.array(pil_image) | |
return watermarked_image | |
examples = [ | |
"Sunset over the Atlas Mountains", | |
"Traditional Amazigh jewelry under the moonlight", | |
"Flying carpet in space", | |
"Unicorn riding a camel in the Sahara Desert", | |
"Moroccan souk floating in the sky", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 840px; | |
color: #003366; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# bibou.jpeg | |
Generate Moroccan folkloric pictures, inspired by Moroccan and Amazigh arts. 🎨🎶 | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=12, | |
step=1, | |
value=2, | |
) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt] | |
) | |
run_button.click( | |
fn = infer, | |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result] | |
) | |
demo.queue().launch() |