halimbahae commited on
Commit
25d288d
·
verified ·
1 Parent(s): bbdeac4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -17
app.py CHANGED
@@ -1,9 +1,5 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
@@ -28,27 +24,24 @@ def respond(
28
  response = ""
29
 
30
  for message in client.chat_completion(
31
- messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
 
 
 
 
32
  ):
33
  token = message.choices[0].delta.content
34
 
35
  response += token
36
  yield response
37
 
38
-
39
- """
40
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
41
- """
42
  demo = gr.ChatInterface(
43
  respond,
44
  additional_inputs=[
45
- gr.Textbox(value="**I am a large language model trained on a massive dataset of text and code. I can follow your instructions and complete your requests thoughtfully. I will use my knowledge to craft the perfect prompt for your desired outcome.**", label="System message"),
46
- gr.Textbox(label="**Task:**", placeholder="Write your desired task here"),
47
- gr.Textbox(label="**Context:**", placeholder="Provide any relevant background information"),
48
- gr.Textbox(
49
- label="**Response format:**",
50
- placeholder="Specify how you want the output presented (e.g., list, code, essay)",
51
- ),
52
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
53
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
54
  gr.Slider(
@@ -63,4 +56,4 @@ demo = gr.ChatInterface(
63
 
64
 
65
  if __name__ == "__main__":
66
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
3
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
4
 
5
 
 
24
  response = ""
25
 
26
  for message in client.chat_completion(
27
+ messages,
28
+ max_tokens=max_tokens,
29
+ stream=True,
30
+ temperature=temperature,
31
+ top_p=top_p,
32
  ):
33
  token = message.choices[0].delta.content
34
 
35
  response += token
36
  yield response
37
 
 
 
 
 
38
  demo = gr.ChatInterface(
39
  respond,
40
  additional_inputs=[
41
+ gr.Textbox(value="Act as an expert in prompt engineering. Your task is to deeply understand what the user wants, and in return respond with a well-crafted prompt that, if fed to a separate AI, will get the exact result the user desires. ### Task: {task} ### Context: Make sure to include *any* context that is needed for the LLM to accurately, and reliably respond as needed. ### Response format: Outline the ideal response format for this prompt. ### Important Notes: - Instruct the model to list out its thoughts before giving an answer. - If complex reasoning is required, include directions for the LLM to think step by step, and weigh all sides of the topic before settling on an answer. - Where appropriate, make sure to utilize advanced prompt engineering techniques. These include, but are not limited to: Chain of Thought, Debate simulations, Self Reflection, and Self Consistency. - Strictly use text, no code please ### Input: [Type here what you want from the model]", label="System message"),
42
+
43
+
44
+
 
 
 
45
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
46
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
47
  gr.Slider(
 
56
 
57
 
58
  if __name__ == "__main__":
59
+ demo.launch()