Spaces:
Runtime error
Runtime error
File size: 10,633 Bytes
48f4d16 390173a 80fefdb 48f4d16 390173a 48f4d16 80fefdb 48f4d16 80fefdb 48f4d16 80fefdb 48f4d16 80fefdb 48f4d16 80fefdb 48f4d16 390173a 48f4d16 390173a 80fefdb 390173a 80fefdb 390173a 80fefdb 48f4d16 80fefdb 48f4d16 80fefdb 48f4d16 80fefdb 48f4d16 80fefdb 390173a 80fefdb 390173a 80fefdb 48f4d16 80fefdb 48f4d16 80fefdb 48f4d16 390173a 48f4d16 390173a 48f4d16 80fefdb 48f4d16 80fefdb 48f4d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import gradio as gr
import torch
import mdtex2html
from utils.exif import get_image_info
from utils.generator import generate_prompt
from utils.image2text import git_image2text, w14_image2text, clip_image2text
from utils.translate import en2zh as translate_en2zh
from utils.translate import zh2en as translate_zh2en
from utils.chatglm import chat2text
from utils.chatglm import models as chatglm_models
device = "cuda" if torch.cuda.is_available() else "cpu"
def text_generate_prompter(
plain_text,
model_name='microsoft',
prompt_min_length=60,
prompt_max_length=75,
prompt_num_return_sequences=8,
):
result = generate_prompt(
plain_text=plain_text,
model_name=model_name,
min_length=prompt_min_length,
max_length=prompt_max_length,
num_return_sequences=prompt_num_return_sequences
)
return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)
def image_generate_prompter(
bclip_text,
w14_text,
model_name='microsoft',
prompt_min_length=60,
prompt_max_length=75,
prompt_num_return_sequences=8,
):
result = generate_prompt(
plain_text=bclip_text,
model_name=model_name,
min_length=prompt_min_length,
max_length=prompt_max_length,
num_return_sequences=prompt_num_return_sequences
)
prompter_list = ["{},{}".format(line.strip(), w14_text.strip()) for line in result.split("\n") if len(line) > 0]
prompter_zh_list = [
"{},{}".format(translate_en2zh(line.strip()), translate_en2zh(w14_text.strip())) for line in
result.split("\n") if len(line) > 0
]
return "\n".join(prompter_list), "\n".join(prompter_zh_list)
def translate_input(text: str, chatglm_text: str) -> str:
if chatglm_text is not None and len(chatglm_text) > 0:
return translate_zh2en(chatglm_text)
return translate_zh2en(text)
with gr.Blocks(title="Prompt生成器") as block:
with gr.Column():
with gr.Tab('Chat'):
def revise(history, latest_message):
history[-1] = (history[-1][0], latest_message)
return history, ''
def revoke(history):
if len(history) >= 1:
history.pop()
return history
def interrupt(allow_generate):
allow_generate[0] = False
def reset_state():
return [], []
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(elem_id="chat-box", show_label=False).style(height=800)
with gr.Column(scale=1):
with gr.Row():
max_length = gr.Slider(32, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0.01, 1, value=0.7, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0.01, 5, value=0.95, step=0.01, label="Temperature", interactive=True)
with gr.Row():
query = gr.Textbox(show_label=False, placeholder="Prompts", lines=4).style(container=False)
generate_button = gr.Button("生成")
with gr.Row():
continue_message = gr.Textbox(
show_label=False, placeholder="Continue message", lines=2).style(container=False)
continue_btn = gr.Button("续写")
revise_message = gr.Textbox(
show_label=False, placeholder="Revise message", lines=2).style(container=False)
revise_btn = gr.Button("修订")
revoke_btn = gr.Button("撤回")
interrupt_btn = gr.Button("终止生成")
reset_btn = gr.Button("清空")
history = gr.State([])
allow_generate = gr.State([True])
blank_input = gr.State("")
reset_btn.click(reset_state, outputs=[chatbot, history], show_progress=True)
generate_button.click(
chatglm_models.chatglm.predict_continue,
inputs=[query, blank_input, max_length, top_p, temperature, allow_generate, history],
outputs=[chatbot, query]
)
revise_btn.click(revise, inputs=[history, revise_message], outputs=[chatbot, revise_message])
revoke_btn.click(revoke, inputs=[history], outputs=[chatbot])
continue_btn.click(
chatglm_models.chatglm.predict_continue,
inputs=[query, continue_message, max_length, top_p, temperature, allow_generate, history],
outputs=[chatbot, query, continue_message]
)
interrupt_btn.click(interrupt, inputs=[allow_generate])
with gr.Tab('文本生成'):
with gr.Row():
input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...')
chatglm_output = gr.Textbox(lines=6, label='ChatGLM', placeholder='在此输入内容...')
translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)')
output = gr.Textbox(lines=6, label='优化的 Prompt')
output_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)')
with gr.Row():
chatglm_btn = gr.Button('召唤ChatGLM')
translate_btn = gr.Button('翻译')
generate_prompter_btn = gr.Button('优化Prompt')
with gr.Tab('从图片中生成'):
with gr.Row():
input_image = gr.Image(type='pil')
exif_info = gr.HTML()
output_blip_or_clip = gr.Textbox(label='生成的 Prompt', lines=4)
output_w14 = gr.Textbox(label='W14的 Prompt', lines=4)
with gr.Accordion('W14', open=False):
w14_raw_output = gr.Textbox(label="Output (raw string)")
w14_booru_output = gr.Textbox(label="Output (booru string)")
w14_rating_output = gr.Label(label="Rating")
w14_characters_output = gr.Label(label="Output (characters)")
w14_tags_output = gr.Label(label="Output (tags)")
output_img_prompter = gr.Textbox(lines=6, label='优化的 Prompt')
output_img_prompter_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)')
with gr.Row():
img_exif_btn = gr.Button('EXIF')
img_blip_btn = gr.Button('BLIP图片转描述')
img_w14_btn = gr.Button('W14图片转描述')
img_clip_btn = gr.Button('CLIP图片转描述')
img_prompter_btn = gr.Button('优化Prompt')
with gr.Tab('参数设置'):
with gr.Accordion('Prompt优化参数', open=True):
prompt_mode_name = gr.Radio(
[
'microsoft',
'mj',
'gpt2_650k',
'gpt_neo_125m',
],
value='gpt2_650k',
label='model_name'
)
prompt_min_length = gr.Slider(1, 512, 100, label='min_length', step=1)
prompt_max_length = gr.Slider(1, 512, 200, label='max_length', step=1)
prompt_num_return_sequences = gr.Slider(1, 30, 8, label='num_return_sequences', step=1)
with gr.Accordion('BLIP参数', open=True):
blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1)
with gr.Accordion('CLIP参数', open=True):
clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type')
clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', label='model_name')
with gr.Accordion('WD14参数', open=True):
image2text_model = gr.Radio(
[
"SwinV2",
"ConvNext",
"ConvNextV2",
"ViT",
],
value="ConvNextV2",
label="Model"
)
general_threshold = gr.Slider(
0,
1,
step=0.05,
value=0.35,
label="General Tags Threshold",
)
character_threshold = gr.Slider(
0,
1,
step=0.05,
value=0.85,
label="Character Tags Threshold",
)
img_prompter_btn.click(
fn=image_generate_prompter,
inputs=[
output_blip_or_clip,
output_w14,
prompt_mode_name,
prompt_min_length,
prompt_max_length,
prompt_num_return_sequences,
],
outputs=[output_img_prompter, output_img_prompter_zh]
)
chatglm_btn.click(
fn=chatglm_models.chatglm.generator_image_text,
inputs=input_text,
outputs=chatglm_output,
)
translate_btn.click(
fn=translate_input,
inputs=[input_text, chatglm_output],
outputs=translate_output
)
generate_prompter_btn.click(
fn=text_generate_prompter,
inputs=[
translate_output,
prompt_mode_name,
prompt_min_length,
prompt_max_length,
prompt_num_return_sequences,
],
outputs=[output, output_zh]
)
img_w14_btn.click(
fn=w14_image2text,
inputs=[input_image, image2text_model, general_threshold, character_threshold],
outputs=[
output_w14,
w14_raw_output,
w14_booru_output,
w14_rating_output,
w14_characters_output,
w14_tags_output
]
)
img_blip_btn.click(
fn=git_image2text,
inputs=[input_image, blip_max_length],
outputs=output_blip_or_clip
)
img_clip_btn.click(
fn=clip_image2text,
inputs=[input_image, clip_mode_type, clip_model_name],
outputs=output_blip_or_clip
)
img_exif_btn.click(
fn=get_image_info,
inputs=input_image,
outputs=exif_info
)
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')
|