File size: 10,633 Bytes
48f4d16
 
390173a
80fefdb
 
48f4d16
 
 
390173a
 
48f4d16
 
 
 
80fefdb
 
 
 
 
 
 
 
 
 
 
 
 
48f4d16
80fefdb
48f4d16
 
 
 
 
80fefdb
 
 
 
 
48f4d16
80fefdb
 
 
 
 
 
48f4d16
80fefdb
 
 
 
 
 
48f4d16
 
390173a
 
 
 
 
 
48f4d16
 
390173a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80fefdb
 
 
390173a
 
80fefdb
 
 
 
 
390173a
80fefdb
 
48f4d16
 
 
 
 
80fefdb
 
48f4d16
 
 
 
 
 
 
80fefdb
 
48f4d16
 
 
 
 
80fefdb
48f4d16
 
80fefdb
 
 
 
 
 
390173a
80fefdb
 
 
 
 
 
390173a
80fefdb
48f4d16
 
 
 
80fefdb
48f4d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80fefdb
 
 
 
 
 
 
 
 
 
48f4d16
390173a
 
48f4d16
390173a
 
 
 
 
48f4d16
 
80fefdb
48f4d16
80fefdb
 
 
 
 
 
 
 
48f4d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import gradio as gr
import torch
import mdtex2html
from utils.exif import get_image_info
from utils.generator import generate_prompt
from utils.image2text import git_image2text, w14_image2text, clip_image2text
from utils.translate import en2zh as translate_en2zh
from utils.translate import zh2en as translate_zh2en
from utils.chatglm import chat2text
from utils.chatglm import models as chatglm_models

device = "cuda" if torch.cuda.is_available() else "cpu"


def text_generate_prompter(
        plain_text,
        model_name='microsoft',
        prompt_min_length=60,
        prompt_max_length=75,
        prompt_num_return_sequences=8,
):
    result = generate_prompt(
        plain_text=plain_text,
        model_name=model_name,
        min_length=prompt_min_length,
        max_length=prompt_max_length,
        num_return_sequences=prompt_num_return_sequences
    )
    return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)


def image_generate_prompter(
        bclip_text,
        w14_text,
        model_name='microsoft',
        prompt_min_length=60,
        prompt_max_length=75,
        prompt_num_return_sequences=8,

):
    result = generate_prompt(
        plain_text=bclip_text,
        model_name=model_name,
        min_length=prompt_min_length,
        max_length=prompt_max_length,
        num_return_sequences=prompt_num_return_sequences
    )
    prompter_list = ["{},{}".format(line.strip(), w14_text.strip()) for line in result.split("\n") if len(line) > 0]
    prompter_zh_list = [
        "{},{}".format(translate_en2zh(line.strip()), translate_en2zh(w14_text.strip())) for line in
        result.split("\n") if len(line) > 0
    ]
    return "\n".join(prompter_list), "\n".join(prompter_zh_list)


def translate_input(text: str, chatglm_text: str) -> str:
    if chatglm_text is not None and len(chatglm_text) > 0:
        return translate_zh2en(chatglm_text)
    return translate_zh2en(text)


with gr.Blocks(title="Prompt生成器") as block:
    with gr.Column():
        with gr.Tab('Chat'):
            def revise(history, latest_message):
                history[-1] = (history[-1][0], latest_message)
                return history, ''


            def revoke(history):
                if len(history) >= 1:
                    history.pop()
                return history


            def interrupt(allow_generate):
                allow_generate[0] = False


            def reset_state():
                return [], []


            with gr.Row():
                with gr.Column(scale=4):
                    chatbot = gr.Chatbot(elem_id="chat-box", show_label=False).style(height=800)
                with gr.Column(scale=1):
                    with gr.Row():
                        max_length = gr.Slider(32, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
                        top_p = gr.Slider(0.01, 1, value=0.7, step=0.01, label="Top P", interactive=True)
                        temperature = gr.Slider(0.01, 5, value=0.95, step=0.01, label="Temperature", interactive=True)
                    with gr.Row():
                        query = gr.Textbox(show_label=False, placeholder="Prompts", lines=4).style(container=False)
                        generate_button = gr.Button("生成")
                    with gr.Row():
                        continue_message = gr.Textbox(
                            show_label=False, placeholder="Continue message", lines=2).style(container=False)
                        continue_btn = gr.Button("续写")
                        revise_message = gr.Textbox(
                            show_label=False, placeholder="Revise message", lines=2).style(container=False)
                        revise_btn = gr.Button("修订")
                        revoke_btn = gr.Button("撤回")
                        interrupt_btn = gr.Button("终止生成")
                        reset_btn = gr.Button("清空")

            history = gr.State([])
            allow_generate = gr.State([True])
            blank_input = gr.State("")
            reset_btn.click(reset_state, outputs=[chatbot, history], show_progress=True)
            generate_button.click(
                chatglm_models.chatglm.predict_continue,
                inputs=[query, blank_input, max_length, top_p, temperature, allow_generate, history],
                outputs=[chatbot, query]
            )
            revise_btn.click(revise, inputs=[history, revise_message], outputs=[chatbot, revise_message])
            revoke_btn.click(revoke, inputs=[history], outputs=[chatbot])
            continue_btn.click(
                chatglm_models.chatglm.predict_continue,
                inputs=[query, continue_message, max_length, top_p, temperature, allow_generate, history],
                outputs=[chatbot, query, continue_message]
            )
            interrupt_btn.click(interrupt, inputs=[allow_generate])
        with gr.Tab('文本生成'):
            with gr.Row():
                input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...')
                chatglm_output = gr.Textbox(lines=6, label='ChatGLM', placeholder='在此输入内容...')

                translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)')

            output = gr.Textbox(lines=6, label='优化的 Prompt')
            output_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)')
            with gr.Row():
                chatglm_btn = gr.Button('召唤ChatGLM')
                translate_btn = gr.Button('翻译')
                generate_prompter_btn = gr.Button('优化Prompt')

        with gr.Tab('从图片中生成'):
            with gr.Row():
                input_image = gr.Image(type='pil')
                exif_info = gr.HTML()
            output_blip_or_clip = gr.Textbox(label='生成的 Prompt', lines=4)
            output_w14 = gr.Textbox(label='W14的 Prompt', lines=4)

            with gr.Accordion('W14', open=False):
                w14_raw_output = gr.Textbox(label="Output (raw string)")
                w14_booru_output = gr.Textbox(label="Output (booru string)")
                w14_rating_output = gr.Label(label="Rating")
                w14_characters_output = gr.Label(label="Output (characters)")
                w14_tags_output = gr.Label(label="Output (tags)")
            output_img_prompter = gr.Textbox(lines=6, label='优化的 Prompt')
            output_img_prompter_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)')
            with gr.Row():
                img_exif_btn = gr.Button('EXIF')
                img_blip_btn = gr.Button('BLIP图片转描述')
                img_w14_btn = gr.Button('W14图片转描述')
                img_clip_btn = gr.Button('CLIP图片转描述')
                img_prompter_btn = gr.Button('优化Prompt')

        with gr.Tab('参数设置'):
            with gr.Accordion('Prompt优化参数', open=True):
                prompt_mode_name = gr.Radio(
                    [
                        'microsoft',
                        'mj',
                        'gpt2_650k',
                        'gpt_neo_125m',
                    ],
                    value='gpt2_650k',
                    label='model_name'
                )
                prompt_min_length = gr.Slider(1, 512, 100, label='min_length', step=1)
                prompt_max_length = gr.Slider(1, 512, 200, label='max_length', step=1)
                prompt_num_return_sequences = gr.Slider(1, 30, 8, label='num_return_sequences', step=1)

            with gr.Accordion('BLIP参数', open=True):
                blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1)
            with gr.Accordion('CLIP参数', open=True):
                clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type')
                clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', label='model_name')
            with gr.Accordion('WD14参数', open=True):
                image2text_model = gr.Radio(
                    [
                        "SwinV2",
                        "ConvNext",
                        "ConvNextV2",
                        "ViT",
                    ],
                    value="ConvNextV2",
                    label="Model"
                )
                general_threshold = gr.Slider(
                    0,
                    1,
                    step=0.05,
                    value=0.35,
                    label="General Tags Threshold",
                )
                character_threshold = gr.Slider(
                    0,
                    1,
                    step=0.05,
                    value=0.85,
                    label="Character Tags Threshold",
                )
    img_prompter_btn.click(
        fn=image_generate_prompter,
        inputs=[
            output_blip_or_clip,
            output_w14,
            prompt_mode_name,
            prompt_min_length,
            prompt_max_length,
            prompt_num_return_sequences,

        ],
        outputs=[output_img_prompter, output_img_prompter_zh]
    )
    chatglm_btn.click(
        fn=chatglm_models.chatglm.generator_image_text,
        inputs=input_text,
        outputs=chatglm_output,
    )
    translate_btn.click(
        fn=translate_input,
        inputs=[input_text, chatglm_output],
        outputs=translate_output
    )

    generate_prompter_btn.click(
        fn=text_generate_prompter,
        inputs=[
            translate_output,
            prompt_mode_name,
            prompt_min_length,
            prompt_max_length,
            prompt_num_return_sequences,
        ],
        outputs=[output, output_zh]
    )
    img_w14_btn.click(
        fn=w14_image2text,
        inputs=[input_image, image2text_model, general_threshold, character_threshold],
        outputs=[
            output_w14,
            w14_raw_output,
            w14_booru_output,
            w14_rating_output,
            w14_characters_output,
            w14_tags_output
        ]
    )

    img_blip_btn.click(
        fn=git_image2text,
        inputs=[input_image, blip_max_length],
        outputs=output_blip_or_clip
    )
    img_clip_btn.click(
        fn=clip_image2text,
        inputs=[input_image, clip_mode_type, clip_model_name],
        outputs=output_blip_or_clip
    )

    img_exif_btn.click(
        fn=get_image_info,
        inputs=input_image,
        outputs=exif_info
    )
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')