Spaces:
Running
on
Zero
Running
on
Zero
amazonaws-la
commited on
Create safety_checker.py
Browse files- safety_checker.py +106 -0
safety_checker.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
|
19 |
+
|
20 |
+
def cosine_distance(image_embeds, text_embeds):
|
21 |
+
normalized_image_embeds = nn.functional.normalize(image_embeds)
|
22 |
+
normalized_text_embeds = nn.functional.normalize(text_embeds)
|
23 |
+
return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
|
24 |
+
|
25 |
+
|
26 |
+
class StableDiffusionSafetyChecker(PreTrainedModel):
|
27 |
+
config_class = CLIPConfig
|
28 |
+
|
29 |
+
_no_split_modules = ["CLIPEncoderLayer"]
|
30 |
+
|
31 |
+
def __init__(self, config: CLIPConfig):
|
32 |
+
super().__init__(config)
|
33 |
+
|
34 |
+
self.vision_model = CLIPVisionModel(config.vision_config)
|
35 |
+
self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False)
|
36 |
+
|
37 |
+
self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False)
|
38 |
+
self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False)
|
39 |
+
|
40 |
+
self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
|
41 |
+
self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False)
|
42 |
+
|
43 |
+
@torch.no_grad()
|
44 |
+
def forward(self, clip_input, images):
|
45 |
+
pooled_output = self.vision_model(clip_input)[1] # pooled_output
|
46 |
+
image_embeds = self.visual_projection(pooled_output)
|
47 |
+
|
48 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
49 |
+
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy()
|
50 |
+
cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
|
51 |
+
|
52 |
+
result = []
|
53 |
+
batch_size = image_embeds.shape[0]
|
54 |
+
for i in range(batch_size):
|
55 |
+
result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
|
56 |
+
|
57 |
+
# increase this value to create a stronger `nfsw` filter
|
58 |
+
# at the cost of increasing the possibility of filtering benign images
|
59 |
+
adjustment = 0.0
|
60 |
+
|
61 |
+
for concept_idx in range(len(special_cos_dist[0])):
|
62 |
+
concept_cos = special_cos_dist[i][concept_idx]
|
63 |
+
concept_threshold = self.special_care_embeds_weights[concept_idx].item()
|
64 |
+
result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
|
65 |
+
if result_img["special_scores"][concept_idx] > 0:
|
66 |
+
result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]})
|
67 |
+
adjustment = 0.01
|
68 |
+
|
69 |
+
for concept_idx in range(len(cos_dist[0])):
|
70 |
+
concept_cos = cos_dist[i][concept_idx]
|
71 |
+
concept_threshold = self.concept_embeds_weights[concept_idx].item()
|
72 |
+
result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
|
73 |
+
if result_img["concept_scores"][concept_idx] > 0:
|
74 |
+
result_img["bad_concepts"].append(concept_idx)
|
75 |
+
|
76 |
+
result.append(result_img)
|
77 |
+
|
78 |
+
has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
|
79 |
+
|
80 |
+
return has_nsfw_concepts
|
81 |
+
|
82 |
+
@torch.no_grad()
|
83 |
+
def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor):
|
84 |
+
pooled_output = self.vision_model(clip_input)[1] # pooled_output
|
85 |
+
image_embeds = self.visual_projection(pooled_output)
|
86 |
+
|
87 |
+
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
|
88 |
+
cos_dist = cosine_distance(image_embeds, self.concept_embeds)
|
89 |
+
|
90 |
+
# increase this value to create a stronger `nsfw` filter
|
91 |
+
# at the cost of increasing the possibility of filtering benign images
|
92 |
+
adjustment = 0.0
|
93 |
+
|
94 |
+
special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment
|
95 |
+
# special_scores = special_scores.round(decimals=3)
|
96 |
+
special_care = torch.any(special_scores > 0, dim=1)
|
97 |
+
special_adjustment = special_care * 0.01
|
98 |
+
special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1])
|
99 |
+
|
100 |
+
concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
|
101 |
+
# concept_scores = concept_scores.round(decimals=3)
|
102 |
+
has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)
|
103 |
+
|
104 |
+
images[has_nsfw_concepts] = 0.0 # black image
|
105 |
+
|
106 |
+
return images, has_nsfw_concepts
|