Spaces:
Running
on
Zero
Running
on
Zero
amazonaws-la
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,10 @@ import gradio as gr
|
|
9 |
import numpy as np
|
10 |
import PIL.Image
|
11 |
import spaces
|
|
|
12 |
import torch
|
13 |
-
from
|
|
|
14 |
|
15 |
DESCRIPTION = "# SDXL"
|
16 |
if not torch.cuda.is_available():
|
@@ -55,12 +57,13 @@ def generate(
|
|
55 |
model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE',
|
56 |
vaecall = 'stabilityai/sd-vae-ft-mse',
|
57 |
lora = 'amazonaws-la/juliette',
|
|
|
58 |
lora_scale: float = 0.7,
|
59 |
) -> PIL.Image.Image:
|
60 |
if torch.cuda.is_available():
|
61 |
|
62 |
if not use_vae:
|
63 |
-
pipe =
|
64 |
|
65 |
if use_vae:
|
66 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
@@ -69,7 +72,11 @@ def generate(
|
|
69 |
if use_lora:
|
70 |
pipe.load_lora_weights(lora)
|
71 |
pipe.fuse_lora(lora_scale=0.7)
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
if ENABLE_CPU_OFFLOAD:
|
74 |
pipe.enable_model_cpu_offload()
|
75 |
|
@@ -99,6 +106,7 @@ def generate(
|
|
99 |
guidance_scale=guidance_scale_base,
|
100 |
num_inference_steps=num_inference_steps_base,
|
101 |
generator=generator,
|
|
|
102 |
output_type="pil",
|
103 |
).images[0]
|
104 |
else:
|
|
|
9 |
import numpy as np
|
10 |
import PIL.Image
|
11 |
import spaces
|
12 |
+
import requests
|
13 |
import torch
|
14 |
+
from io import BytesIO
|
15 |
+
from diffusers import StableDiffusionImg2ImgPipeline, AutoencoderKL, DiffusionPipeline
|
16 |
|
17 |
DESCRIPTION = "# SDXL"
|
18 |
if not torch.cuda.is_available():
|
|
|
57 |
model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE',
|
58 |
vaecall = 'stabilityai/sd-vae-ft-mse',
|
59 |
lora = 'amazonaws-la/juliette',
|
60 |
+
url = 'https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg'
|
61 |
lora_scale: float = 0.7,
|
62 |
) -> PIL.Image.Image:
|
63 |
if torch.cuda.is_available():
|
64 |
|
65 |
if not use_vae:
|
66 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
67 |
|
68 |
if use_vae:
|
69 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
|
|
72 |
if use_lora:
|
73 |
pipe.load_lora_weights(lora)
|
74 |
pipe.fuse_lora(lora_scale=0.7)
|
75 |
+
|
76 |
+
response = requests.get(url)
|
77 |
+
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
78 |
+
init_image = init_image.resize((1024, 1024))
|
79 |
+
|
80 |
if ENABLE_CPU_OFFLOAD:
|
81 |
pipe.enable_model_cpu_offload()
|
82 |
|
|
|
106 |
guidance_scale=guidance_scale_base,
|
107 |
num_inference_steps=num_inference_steps_base,
|
108 |
generator=generator,
|
109 |
+
image=init_image
|
110 |
output_type="pil",
|
111 |
).images[0]
|
112 |
else:
|