import ast import copy import functools import inspect import itertools import json import os import pprint import random import shutil import sys import time import traceback import typing import uuid import filelock import pandas as pd import requests import tabulate from iterators import TimeoutIterator from gradio_utils.css import get_css from gradio_utils.prompt_form import make_chatbots # This is a hack to prevent Gradio from phoning home when it gets imported os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False' def my_get(url, **kwargs): print('Gradio HTTP request redirected to localhost :)', flush=True) kwargs.setdefault('allow_redirects', True) return requests.api.request('get', 'http://127.0.0.1/', **kwargs) original_get = requests.get requests.get = my_get import gradio as gr requests.get = original_get def fix_pydantic_duplicate_validators_error(): try: from pydantic import class_validators class_validators.in_ipython = lambda: True # type: ignore[attr-defined] except ImportError: pass fix_pydantic_duplicate_validators_error() from enums import DocumentSubset, no_model_str, no_lora_str, no_server_str, LangChainAction, LangChainMode, \ DocumentChoice, langchain_modes_intrinsic from gradio_themes import H2oTheme, SoftTheme, get_h2o_title, get_simple_title, get_dark_js, spacing_xsm, radius_xsm, \ text_xsm from prompter import prompt_type_to_model_name, prompt_types_strings, inv_prompt_type_to_model_lower, non_hf_types, \ get_prompt from utils import flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print, \ ping, get_short_name, makedirs, get_kwargs, remove, system_info, ping_gpu, get_url, get_local_ip, \ save_collection_names from gen import get_model, languages_covered, evaluate, score_qa, inputs_kwargs_list, scratch_base_dir, \ get_max_max_new_tokens, get_minmax_top_k_docs, history_to_context, langchain_actions, langchain_agents_list, \ update_langchain from evaluate_params import eval_func_param_names, no_default_param_names, eval_func_param_names_defaults, \ input_args_list from apscheduler.schedulers.background import BackgroundScheduler def fix_text_for_gradio(text, fix_new_lines=False, fix_latex_dollars=True): if fix_latex_dollars: ts = text.split('```') for parti, part in enumerate(ts): inside = parti % 2 == 1 if not inside: ts[parti] = ts[parti].replace('$', '﹩') text = '```'.join(ts) if fix_new_lines: # let Gradio handle code, since got improved recently ## FIXME: below conflicts with Gradio, but need to see if can handle multiple \n\n\n etc. properly as is. # ensure good visually, else markdown ignores multiple \n # handle code blocks ts = text.split('```') for parti, part in enumerate(ts): inside = parti % 2 == 1 if not inside: ts[parti] = ts[parti].replace('\n', '
') text = '```'.join(ts) return text def go_gradio(**kwargs): allow_api = kwargs['allow_api'] is_public = kwargs['is_public'] is_hf = kwargs['is_hf'] memory_restriction_level = kwargs['memory_restriction_level'] n_gpus = kwargs['n_gpus'] admin_pass = kwargs['admin_pass'] model_states = kwargs['model_states'] dbs = kwargs['dbs'] db_type = kwargs['db_type'] visible_langchain_actions = kwargs['visible_langchain_actions'] visible_langchain_agents = kwargs['visible_langchain_agents'] allow_upload_to_user_data = kwargs['allow_upload_to_user_data'] allow_upload_to_my_data = kwargs['allow_upload_to_my_data'] enable_sources_list = kwargs['enable_sources_list'] enable_url_upload = kwargs['enable_url_upload'] enable_text_upload = kwargs['enable_text_upload'] use_openai_embedding = kwargs['use_openai_embedding'] hf_embedding_model = kwargs['hf_embedding_model'] enable_captions = kwargs['enable_captions'] captions_model = kwargs['captions_model'] enable_ocr = kwargs['enable_ocr'] enable_pdf_ocr = kwargs['enable_pdf_ocr'] caption_loader = kwargs['caption_loader'] # for dynamic state per user session in gradio model_state0 = kwargs['model_state0'] score_model_state0 = kwargs['score_model_state0'] my_db_state0 = kwargs['my_db_state0'] selection_docs_state0 = kwargs['selection_docs_state0'] # for evaluate defaults langchain_modes0 = kwargs['langchain_modes'] visible_langchain_modes0 = kwargs['visible_langchain_modes'] langchain_mode_paths0 = kwargs['langchain_mode_paths'] # easy update of kwargs needed for evaluate() etc. queue = True allow_upload = allow_upload_to_user_data or allow_upload_to_my_data kwargs.update(locals()) # import control if kwargs['langchain_mode'] != 'Disabled': from gpt_langchain import file_types, have_arxiv else: have_arxiv = False file_types = [] if 'mbart-' in kwargs['model_lower']: instruction_label_nochat = "Text to translate" else: instruction_label_nochat = "Instruction (Shift-Enter or push Submit to send message," \ " use Enter for multiple input lines)" title = 'h2oGPT' description = """h2oGPT H2O LLM Studio
🤗 Models""" description_bottom = "If this host is busy, try
[Multi-Model](https://gpt.h2o.ai)
[Falcon 40B](https://falcon.h2o.ai)
[Vicuna 33B](https://wizardvicuna.h2o.ai)
[MPT 30B-Chat](https://mpt.h2o.ai)
[HF Spaces1](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot)
[HF Spaces2](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)
" if is_hf: description_bottom += '''Duplicate Space''' task_info_md = '' css_code = get_css(kwargs) if kwargs['gradio_offline_level'] >= 0: # avoid GoogleFont that pulls from internet if kwargs['gradio_offline_level'] == 1: # front end would still have to download fonts or have cached it at some point base_font = 'Source Sans Pro' else: base_font = 'Helvetica' theme_kwargs = dict(font=(base_font, 'ui-sans-serif', 'system-ui', 'sans-serif'), font_mono=('IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace')) else: theme_kwargs = dict() if kwargs['gradio_size'] == 'xsmall': theme_kwargs.update(dict(spacing_size=spacing_xsm, text_size=text_xsm, radius_size=radius_xsm)) elif kwargs['gradio_size'] in [None, 'small']: theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_sm, text_size=gr.themes.sizes.text_sm, radius_size=gr.themes.sizes.spacing_sm)) elif kwargs['gradio_size'] == 'large': theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_lg, text_size=gr.themes.sizes.text_lg), radius_size=gr.themes.sizes.spacing_lg) elif kwargs['gradio_size'] == 'medium': theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_md, text_size=gr.themes.sizes.text_md, radius_size=gr.themes.sizes.spacing_md)) theme = H2oTheme(**theme_kwargs) if kwargs['h2ocolors'] else SoftTheme(**theme_kwargs) demo = gr.Blocks(theme=theme, css=css_code, title="h2oGPT", analytics_enabled=False) callback = gr.CSVLogger() model_options0 = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options'] if kwargs['base_model'].strip() not in model_options0: model_options0 = [kwargs['base_model'].strip()] + model_options0 lora_options = kwargs['extra_lora_options'] if kwargs['lora_weights'].strip() not in lora_options: lora_options = [kwargs['lora_weights'].strip()] + lora_options server_options = kwargs['extra_server_options'] if kwargs['inference_server'].strip() not in server_options: server_options = [kwargs['inference_server'].strip()] + server_options if os.getenv('OPENAI_API_KEY'): if 'openai_chat' not in server_options: server_options += ['openai_chat'] if 'openai' not in server_options: server_options += ['openai'] # always add in no lora case # add fake space so doesn't go away in gradio dropdown model_options0 = [no_model_str] + model_options0 lora_options = [no_lora_str] + lora_options server_options = [no_server_str] + server_options # always add in no model case so can free memory # add fake space so doesn't go away in gradio dropdown # transcribe, will be detranscribed before use by evaluate() if not kwargs['base_model'].strip(): kwargs['base_model'] = no_model_str if not kwargs['lora_weights'].strip(): kwargs['lora_weights'] = no_lora_str if not kwargs['inference_server'].strip(): kwargs['inference_server'] = no_server_str # transcribe for gradio kwargs['gpu_id'] = str(kwargs['gpu_id']) no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]' output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get( 'base_model') else no_model_msg output_label0_model2 = no_model_msg def update_prompt(prompt_type1, prompt_dict1, model_state1, which_model=0): if not prompt_type1 or which_model != 0: # keep prompt_type and prompt_dict in sync if possible prompt_type1 = kwargs.get('prompt_type', prompt_type1) prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1) # prefer model specific prompt type instead of global one if not prompt_type1 or which_model != 0: prompt_type1 = model_state1.get('prompt_type', prompt_type1) prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1) if not prompt_dict1 or which_model != 0: # if still not defined, try to get prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1) if not prompt_dict1 or which_model != 0: prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1) return prompt_type1, prompt_dict1 default_kwargs = {k: kwargs[k] for k in eval_func_param_names_defaults} # ensure prompt_type consistent with prep_bot(), so nochat API works same way default_kwargs['prompt_type'], default_kwargs['prompt_dict'] = \ update_prompt(default_kwargs['prompt_type'], default_kwargs['prompt_dict'], model_state1=model_state0, which_model=0) for k in no_default_param_names: default_kwargs[k] = '' def dummy_fun(x): # need dummy function to block new input from being sent until output is done, # else gets input_list at time of submit that is old, and shows up as truncated in chatbot return x def allow_empty_instruction(langchain_mode1, document_subset1, langchain_action1): allow = False allow |= langchain_action1 not in LangChainAction.QUERY.value allow |= document_subset1 in DocumentSubset.TopKSources.name if langchain_mode1 in [LangChainMode.LLM.value]: allow = False return allow with demo: # avoid actual model/tokenizer here or anything that would be bad to deepcopy # https://github.com/gradio-app/gradio/issues/3558 model_state = gr.State( dict(model='model', tokenizer='tokenizer', device=kwargs['device'], base_model=kwargs['base_model'], tokenizer_base_model=kwargs['tokenizer_base_model'], lora_weights=kwargs['lora_weights'], inference_server=kwargs['inference_server'], prompt_type=kwargs['prompt_type'], prompt_dict=kwargs['prompt_dict'], ) ) def update_langchain_mode_paths(db1s, selection_docs_state1): if allow_upload_to_my_data: selection_docs_state1['langchain_mode_paths'].update({k: None for k in db1s}) dup = selection_docs_state1['langchain_mode_paths'].copy() for k, v in dup.items(): if k not in selection_docs_state1['visible_langchain_modes']: selection_docs_state1['langchain_mode_paths'].pop(k) return selection_docs_state1 # Setup some gradio states for per-user dynamic state model_state2 = gr.State(kwargs['model_state_none'].copy()) model_options_state = gr.State([model_options0]) lora_options_state = gr.State([lora_options]) server_options_state = gr.State([server_options]) my_db_state = gr.State(my_db_state0) chat_state = gr.State({}) docs_state00 = kwargs['document_choice'] + [DocumentChoice.ALL.value] docs_state0 = [] [docs_state0.append(x) for x in docs_state00 if x not in docs_state0] docs_state = gr.State(docs_state0) viewable_docs_state0 = [] viewable_docs_state = gr.State(viewable_docs_state0) selection_docs_state0 = update_langchain_mode_paths(my_db_state0, selection_docs_state0) selection_docs_state = gr.State(selection_docs_state0) gr.Markdown(f""" {get_h2o_title(title, description) if kwargs['h2ocolors'] else get_simple_title(title, description)} """) # go button visible if base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0'] go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary") nas = ' '.join(['NA'] * len(kwargs['model_states'])) res_value = "Response Score: NA" if not kwargs[ 'model_lock'] else "Response Scores: %s" % nas if kwargs['langchain_mode'] != LangChainMode.DISABLED.value: extra_prompt_form = ". For summarization, no query required, just click submit" else: extra_prompt_form = "" if kwargs['input_lines'] > 1: instruction_label = "Shift-Enter to Submit, Enter for more lines%s" % extra_prompt_form else: instruction_label = "Enter to Submit, Shift-Enter for more lines%s" % extra_prompt_form def get_langchain_choices(selection_docs_state1): langchain_modes = selection_docs_state1['langchain_modes'] visible_langchain_modes = selection_docs_state1['visible_langchain_modes'] if is_hf: # don't show 'wiki' since only usually useful for internal testing at moment no_show_modes = ['Disabled', 'wiki'] else: no_show_modes = ['Disabled'] allowed_modes = visible_langchain_modes.copy() # allowed_modes = [x for x in allowed_modes if x in dbs] allowed_modes += ['LLM'] if allow_upload_to_my_data and 'MyData' not in allowed_modes: allowed_modes += ['MyData'] if allow_upload_to_user_data and 'UserData' not in allowed_modes: allowed_modes += ['UserData'] choices = [x for x in langchain_modes if x in allowed_modes and x not in no_show_modes] return choices def get_df_langchain_mode_paths(selection_docs_state1): langchain_mode_paths = selection_docs_state1['langchain_mode_paths'] if langchain_mode_paths: df = pd.DataFrame.from_dict(langchain_mode_paths.items(), orient='columns') df.columns = ['Collection', 'Path'] else: df = pd.DataFrame(None) return df normal_block = gr.Row(visible=not base_wanted, equal_height=False) with normal_block: side_bar = gr.Column(elem_id="col_container", scale=1, min_width=100) with side_bar: with gr.Accordion("Chats", open=False, visible=True): radio_chats = gr.Radio(value=None, label="Saved Chats", show_label=False, visible=True, interactive=True, type='value') upload_visible = kwargs['langchain_mode'] != 'Disabled' and allow_upload with gr.Accordion("Upload", open=False, visible=upload_visible): with gr.Column(): with gr.Row(equal_height=False): file_types_str = '[' + ' '.join(file_types) + ' URL ArXiv TEXT' + ']' fileup_output = gr.File(label=f'Upload {file_types_str}', show_label=False, file_types=file_types, file_count="multiple", scale=1, min_width=0, elem_id="warning", elem_classes="feedback") fileup_output_text = gr.Textbox(visible=False) url_visible = kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_url_upload url_label = 'URL/ArXiv' if have_arxiv else 'URL' url_text = gr.Textbox(label=url_label, # placeholder="Enter Submits", max_lines=1, interactive=True) text_visible = kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_text_upload user_text_text = gr.Textbox(label='Paste Text', # placeholder="Enter Submits", interactive=True, visible=text_visible) github_textbox = gr.Textbox(label="Github URL", visible=False) # FIXME WIP database_visible = kwargs['langchain_mode'] != 'Disabled' with gr.Accordion("Resources", open=False, visible=database_visible): langchain_choices0 = get_langchain_choices(selection_docs_state0) langchain_mode = gr.Radio( langchain_choices0, value=kwargs['langchain_mode'], label="Collections", show_label=True, visible=kwargs['langchain_mode'] != 'Disabled', min_width=100) add_chat_history_to_context = gr.Checkbox(label="Chat History", value=kwargs['add_chat_history_to_context']) document_subset = gr.Radio([x.name for x in DocumentSubset], label="Subset", value=DocumentSubset.Relevant.name, interactive=True, ) allowed_actions = [x for x in langchain_actions if x in visible_langchain_actions] langchain_action = gr.Radio( allowed_actions, value=allowed_actions[0] if len(allowed_actions) > 0 else None, label="Action", visible=True) allowed_agents = [x for x in langchain_agents_list if x in visible_langchain_agents] langchain_agents = gr.Dropdown( langchain_agents_list, value=kwargs['langchain_agents'], label="Agents", multiselect=True, interactive=True, visible=False) # WIP col_tabs = gr.Column(elem_id="col_container", scale=10) with (col_tabs, gr.Tabs()): with gr.TabItem("Chat"): if kwargs['langchain_mode'] == 'Disabled': text_output_nochat = gr.Textbox(lines=5, label=output_label0, show_copy_button=True, visible=not kwargs['chat']) else: # text looks a bit worse, but HTML links work text_output_nochat = gr.HTML(label=output_label0, visible=not kwargs['chat']) with gr.Row(): # NOCHAT instruction_nochat = gr.Textbox( lines=kwargs['input_lines'], label=instruction_label_nochat, placeholder=kwargs['placeholder_instruction'], visible=not kwargs['chat'], ) iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction", placeholder=kwargs['placeholder_input'], visible=not kwargs['chat']) submit_nochat = gr.Button("Submit", size='sm', visible=not kwargs['chat']) flag_btn_nochat = gr.Button("Flag", size='sm', visible=not kwargs['chat']) score_text_nochat = gr.Textbox("Response Score: NA", show_label=False, visible=not kwargs['chat']) submit_nochat_api = gr.Button("Submit nochat API", visible=False) inputs_dict_str = gr.Textbox(label='API input for nochat', show_label=False, visible=False) text_output_nochat_api = gr.Textbox(lines=5, label='API nochat output', visible=False, show_copy_button=True) # CHAT col_chat = gr.Column(visible=kwargs['chat']) with col_chat: with gr.Row(): # elem_id='prompt-form-area'): with gr.Column(scale=50): instruction = gr.Textbox( lines=kwargs['input_lines'], label='Ask anything', placeholder=instruction_label, info=None, elem_id='prompt-form', container=True, ) submit_buttons = gr.Row(equal_height=False) with submit_buttons: mw1 = 50 mw2 = 50 with gr.Column(min_width=mw1): submit = gr.Button(value='Submit', variant='primary', size='sm', min_width=mw1) stop_btn = gr.Button(value="Stop", variant='secondary', size='sm', min_width=mw1) save_chat_btn = gr.Button("Save", size='sm', min_width=mw1) with gr.Column(min_width=mw2): retry_btn = gr.Button("Redo", size='sm', min_width=mw2) undo = gr.Button("Undo", size='sm', min_width=mw2) clear_chat_btn = gr.Button(value="Clear", size='sm', min_width=mw2) text_output, text_output2, text_outputs = make_chatbots(output_label0, output_label0_model2, **kwargs) with gr.Row(): with gr.Column(visible=kwargs['score_model']): score_text = gr.Textbox(res_value, show_label=False, visible=True) score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False and not kwargs['model_lock']) with gr.TabItem("Document Selection"): document_choice = gr.Dropdown(docs_state0, label="Select Subset of Document(s) %s" % file_types_str, value=[DocumentChoice.ALL.value], interactive=True, multiselect=True, visible=kwargs['langchain_mode'] != 'Disabled', ) sources_visible = kwargs['langchain_mode'] != 'Disabled' and enable_sources_list with gr.Row(): with gr.Column(scale=1): get_sources_btn = gr.Button(value="Update UI with Document(s) from DB", scale=0, size='sm', visible=sources_visible) show_sources_btn = gr.Button(value="Show Sources from DB", scale=0, size='sm', visible=sources_visible) refresh_sources_btn = gr.Button(value="Update DB with new/changed files on disk", scale=0, size='sm', visible=sources_visible and allow_upload_to_user_data) with gr.Column(scale=4): pass with gr.Row(): with gr.Column(scale=1): add_placeholder = "e.g. UserData2, user_path2 (optional)" \ if not is_public else "e.g. MyData2" remove_placeholder = "e.g. UserData2" if not is_public else "e.g. MyData2" new_langchain_mode_text = gr.Textbox(value="", visible=allow_upload_to_user_data or allow_upload_to_my_data, label='Add Collection', placeholder=add_placeholder, interactive=True) remove_langchain_mode_text = gr.Textbox(value="", visible=allow_upload_to_user_data or allow_upload_to_my_data, label='Remove Collection', placeholder=remove_placeholder, interactive=True) load_langchain = gr.Button(value="Load LangChain State", scale=0, size='sm', visible=allow_upload_to_user_data) with gr.Column(scale=1): df0 = get_df_langchain_mode_paths(selection_docs_state0) langchain_mode_path_text = gr.Dataframe(value=df0, visible=allow_upload_to_user_data or allow_upload_to_my_data, label='LangChain Mode-Path', show_label=False, interactive=False) with gr.Column(scale=4): pass sources_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list, equal_height=False) with sources_row: with gr.Column(scale=1): file_source = gr.File(interactive=False, label="Download File w/Sources") with gr.Column(scale=2): sources_text = gr.HTML(label='Sources Added', interactive=False) doc_exception_text = gr.Textbox(value="", label='Document Exceptions', interactive=False, visible=kwargs['langchain_mode'] != 'Disabled') with gr.TabItem("Document Viewer"): with gr.Row(visible=kwargs['langchain_mode'] != 'Disabled'): with gr.Column(scale=2): get_viewable_sources_btn = gr.Button(value="Update UI with Document(s) from DB", scale=0, size='sm', visible=sources_visible) view_document_choice = gr.Dropdown(viewable_docs_state0, label="Select Single Document", value=None, interactive=True, multiselect=False, visible=True, ) with gr.Column(scale=4): pass document = 'http://infolab.stanford.edu/pub/papers/google.pdf' doc_view = gr.HTML(visible=False) doc_view2 = gr.Dataframe(visible=False) doc_view3 = gr.JSON(visible=False) doc_view4 = gr.Markdown(visible=False) with gr.TabItem("Chat History"): with gr.Row(): with gr.Column(scale=1): remove_chat_btn = gr.Button(value="Remove Selected Saved Chats", visible=True, size='sm') flag_btn = gr.Button("Flag Current Chat", size='sm') export_chats_btn = gr.Button(value="Export Chats to Download", size='sm') with gr.Column(scale=4): pass with gr.Row(): chats_file = gr.File(interactive=False, label="Download Exported Chats") chatsup_output = gr.File(label="Upload Chat File(s)", file_types=['.json'], file_count='multiple', elem_id="warning", elem_classes="feedback") with gr.Row(): if 'mbart-' in kwargs['model_lower']: src_lang = gr.Dropdown(list(languages_covered().keys()), value=kwargs['src_lang'], label="Input Language") tgt_lang = gr.Dropdown(list(languages_covered().keys()), value=kwargs['tgt_lang'], label="Output Language") chat_exception_text = gr.Textbox(value="", visible=True, label='Chat Exceptions', interactive=False) with gr.TabItem("Expert"): with gr.Row(): with gr.Column(): stream_output = gr.components.Checkbox(label="Stream output", value=kwargs['stream_output']) prompt_type = gr.Dropdown(prompt_types_strings, value=kwargs['prompt_type'], label="Prompt Type", visible=not kwargs['model_lock'], interactive=not is_public, ) prompt_type2 = gr.Dropdown(prompt_types_strings, value=kwargs['prompt_type'], label="Prompt Type Model 2", visible=False and not kwargs['model_lock'], interactive=not is_public) do_sample = gr.Checkbox(label="Sample", info="Enable sampler, required for use of temperature, top_p, top_k", value=kwargs['do_sample']) temperature = gr.Slider(minimum=0.01, maximum=2, value=kwargs['temperature'], label="Temperature", info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)") top_p = gr.Slider(minimum=1e-3, maximum=1.0 - 1e-3, value=kwargs['top_p'], label="Top p", info="Cumulative probability of tokens to sample from") top_k = gr.Slider( minimum=1, maximum=100, step=1, value=kwargs['top_k'], label="Top k", info='Num. tokens to sample from' ) # FIXME: https://github.com/h2oai/h2ogpt/issues/106 if os.getenv('TESTINGFAIL'): max_beams = 8 if not (memory_restriction_level or is_public) else 1 else: max_beams = 1 num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1, value=min(max_beams, kwargs['num_beams']), label="Beams", info="Number of searches for optimal overall probability. " "Uses more GPU memory/compute", interactive=False) max_max_new_tokens = get_max_max_new_tokens(model_state0, **kwargs) max_new_tokens = gr.Slider( minimum=1, maximum=max_max_new_tokens, step=1, value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length", ) min_new_tokens = gr.Slider( minimum=0, maximum=max_max_new_tokens, step=1, value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length", ) max_new_tokens2 = gr.Slider( minimum=1, maximum=max_max_new_tokens, step=1, value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length 2", visible=False and not kwargs['model_lock'], ) min_new_tokens2 = gr.Slider( minimum=0, maximum=max_max_new_tokens, step=1, value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length 2", visible=False and not kwargs['model_lock'], ) early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search", value=kwargs['early_stopping']) max_time = gr.Slider(minimum=0, maximum=kwargs['max_max_time'], step=1, value=min(kwargs['max_max_time'], kwargs['max_time']), label="Max. time", info="Max. time to search optimal output.") repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0, value=kwargs['repetition_penalty'], label="Repetition Penalty") num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1, value=kwargs['num_return_sequences'], label="Number Returns", info="Must be <= num_beams", interactive=not is_public) iinput = gr.Textbox(lines=4, label="Input", placeholder=kwargs['placeholder_input'], interactive=not is_public) context = gr.Textbox(lines=3, label="System Pre-Context", info="Directly pre-appended without prompt processing", interactive=not is_public) chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'], visible=False, # no longer support nochat in UI interactive=not is_public, ) count_chat_tokens_btn = gr.Button(value="Count Chat Tokens", visible=not is_public and not kwargs['model_lock'], interactive=not is_public) chat_token_count = gr.Textbox(label="Chat Token Count", value=None, visible=not is_public and not kwargs['model_lock'], interactive=False) chunk = gr.components.Checkbox(value=kwargs['chunk'], label="Whether to chunk documents", info="For LangChain", visible=kwargs['langchain_mode'] != 'Disabled', interactive=not is_public) min_top_k_docs, max_top_k_docs, label_top_k_docs = get_minmax_top_k_docs(is_public) top_k_docs = gr.Slider(minimum=min_top_k_docs, maximum=max_top_k_docs, step=1, value=kwargs['top_k_docs'], label=label_top_k_docs, info="For LangChain", visible=kwargs['langchain_mode'] != 'Disabled', interactive=not is_public) chunk_size = gr.Number(value=kwargs['chunk_size'], label="Chunk size for document chunking", info="For LangChain (ignored if chunk=False)", minimum=128, maximum=2048, visible=kwargs['langchain_mode'] != 'Disabled', interactive=not is_public, precision=0) with gr.TabItem("Models"): model_lock_msg = gr.Textbox(lines=1, label="Model Lock Notice", placeholder="Started in model_lock mode, no model changes allowed.", visible=bool(kwargs['model_lock']), interactive=False) load_msg = "Load-Unload Model/LORA [unload works if did not use --base_model]" if not is_public \ else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO" load_msg2 = "Load-Unload Model/LORA 2 [unload works if did not use --base_model]" if not is_public \ else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2" variant_load_msg = 'primary' if not is_public else 'secondary' compare_checkbox = gr.components.Checkbox(label="Compare Mode", value=kwargs['model_lock'], visible=not is_public and not kwargs['model_lock']) with gr.Row(): n_gpus_list = [str(x) for x in list(range(-1, n_gpus))] with gr.Column(): with gr.Row(): with gr.Column(scale=20, visible=not kwargs['model_lock']): model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model", value=kwargs['base_model']) lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA", value=kwargs['lora_weights'], visible=kwargs['show_lora']) server_choice = gr.Dropdown(server_options_state.value[0], label="Choose Server", value=kwargs['inference_server'], visible=not is_public) with gr.Column(scale=1, visible=not kwargs['model_lock']): load_model_button = gr.Button(load_msg, variant=variant_load_msg, scale=0, size='sm', interactive=not is_public) model_load8bit_checkbox = gr.components.Checkbox( label="Load 8-bit [requires support]", value=kwargs['load_8bit'], interactive=not is_public) model_use_gpu_id_checkbox = gr.components.Checkbox( label="Choose Devices [If not Checked, use all GPUs]", value=kwargs['use_gpu_id'], interactive=not is_public) model_gpu = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs, if Choose is enabled]", value=kwargs['gpu_id'], interactive=not is_public) model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'], interactive=False) lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'], visible=kwargs['show_lora'], interactive=False) server_used = gr.Textbox(label="Current Server", value=kwargs['inference_server'], visible=bool(kwargs['inference_server']) and not is_public, interactive=False) prompt_dict = gr.Textbox(label="Prompt (or Custom)", value=pprint.pformat(kwargs['prompt_dict'], indent=4), interactive=not is_public, lines=4) col_model2 = gr.Column(visible=False) with col_model2: with gr.Row(): with gr.Column(scale=20, visible=not kwargs['model_lock']): model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2", value=no_model_str) lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2", value=no_lora_str, visible=kwargs['show_lora']) server_choice2 = gr.Dropdown(server_options_state.value[0], label="Choose Server 2", value=no_server_str, visible=not is_public) with gr.Column(scale=1, visible=not kwargs['model_lock']): load_model_button2 = gr.Button(load_msg2, variant=variant_load_msg, scale=0, size='sm', interactive=not is_public) model_load8bit_checkbox2 = gr.components.Checkbox( label="Load 8-bit 2 [requires support]", value=kwargs['load_8bit'], interactive=not is_public) model_use_gpu_id_checkbox2 = gr.components.Checkbox( label="Choose Devices 2 [If not Checked, use all GPUs]", value=kwargs[ 'use_gpu_id'], interactive=not is_public) model_gpu2 = gr.Dropdown(n_gpus_list, label="GPU ID 2 [-1 = all GPUs, if choose is enabled]", value=kwargs['gpu_id'], interactive=not is_public) # no model/lora loaded ever in model2 by default model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str, interactive=False) lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str, visible=kwargs['show_lora'], interactive=False) server_used2 = gr.Textbox(label="Current Server 2", value=no_server_str, interactive=False, visible=not is_public) prompt_dict2 = gr.Textbox(label="Prompt (or Custom) 2", value=pprint.pformat(kwargs['prompt_dict'], indent=4), interactive=not is_public, lines=4) with gr.Row(visible=not kwargs['model_lock']): with gr.Column(scale=50): new_model = gr.Textbox(label="New Model name/path", interactive=not is_public) with gr.Column(scale=50): new_lora = gr.Textbox(label="New LORA name/path", visible=kwargs['show_lora'], interactive=not is_public) with gr.Column(scale=50): new_server = gr.Textbox(label="New Server url:port", interactive=not is_public) with gr.Row(): add_model_lora_server_button = gr.Button("Add new Model, Lora, Server url:port", scale=0, size='sm', interactive=not is_public) with gr.TabItem("System"): with gr.Row(): with gr.Column(scale=1): side_bar_text = gr.Textbox('on', visible=False, interactive=False) submit_buttons_text = gr.Textbox('on', visible=False, interactive=False) side_bar_btn = gr.Button("Toggle SideBar", variant="secondary", size="sm") submit_buttons_btn = gr.Button("Toggle Submit Buttons", variant="secondary", size="sm") col_tabs_scale = gr.Slider(minimum=1, maximum=20, value=10, step=1, label='Window Size') text_outputs_height = gr.Slider(minimum=100, maximum=2000, value=kwargs['height'] or 400, step=50, label='Chat Height') dark_mode_btn = gr.Button("Dark Mode", variant="secondary", size="sm") with gr.Column(scale=4): pass system_visible0 = not is_public and not admin_pass admin_row = gr.Row() with admin_row: with gr.Column(scale=1): admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=not system_visible0) with gr.Column(scale=4): pass system_row = gr.Row(visible=system_visible0) with system_row: with gr.Column(): with gr.Row(): system_btn = gr.Button(value='Get System Info', size='sm') system_text = gr.Textbox(label='System Info', interactive=False, show_copy_button=True) with gr.Row(): system_input = gr.Textbox(label='System Info Dict Password', interactive=True, visible=not is_public) system_btn2 = gr.Button(value='Get System Info Dict', visible=not is_public, size='sm') system_text2 = gr.Textbox(label='System Info Dict', interactive=False, visible=not is_public, show_copy_button=True) with gr.Row(): system_btn3 = gr.Button(value='Get Hash', visible=not is_public, size='sm') system_text3 = gr.Textbox(label='Hash', interactive=False, visible=not is_public, show_copy_button=True) with gr.Row(): zip_btn = gr.Button("Zip", size='sm') zip_text = gr.Textbox(label="Zip file name", interactive=False) file_output = gr.File(interactive=False, label="Zip file to Download") with gr.Row(): s3up_btn = gr.Button("S3UP", size='sm') s3up_text = gr.Textbox(label='S3UP result', interactive=False) with gr.TabItem("Terms of Service"): description = "" description += """

DISCLAIMERS:

""" gr.Markdown(value=description, show_label=False, interactive=False) with gr.TabItem("Hosts"): gr.Markdown(f""" {description_bottom} {task_info_md} """) # Get flagged data zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']]) zip_event = zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text], queue=False, api_name='zip_data' if allow_api else None) s3up_event = s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text, queue=False, api_name='s3up_data' if allow_api else None) def clear_file_list(): return None def make_non_interactive(*args): if len(args) == 1: return gr.update(interactive=False) else: return tuple([gr.update(interactive=False)] * len(args)) def make_interactive(*args): if len(args) == 1: return gr.update(interactive=True) else: return tuple([gr.update(interactive=True)] * len(args)) # Add to UserData or custom user db update_db_func = functools.partial(update_user_db, dbs=dbs, db_type=db_type, use_openai_embedding=use_openai_embedding, hf_embedding_model=hf_embedding_model, captions_model=captions_model, enable_captions=enable_captions, caption_loader=caption_loader, enable_ocr=enable_ocr, enable_pdf_ocr=enable_pdf_ocr, verbose=kwargs['verbose'], n_jobs=kwargs['n_jobs'], ) add_file_outputs = [fileup_output, langchain_mode] add_file_kwargs = dict(fn=update_db_func, inputs=[fileup_output, my_db_state, selection_docs_state, chunk, chunk_size, langchain_mode], outputs=add_file_outputs + [sources_text, doc_exception_text], queue=queue, api_name='add_file' if allow_api and allow_upload_to_user_data else None) # then no need for add buttons, only single changeable db eventdb1a = fileup_output.upload(make_non_interactive, inputs=add_file_outputs, outputs=add_file_outputs, show_progress='minimal') eventdb1 = eventdb1a.then(**add_file_kwargs, show_progress='full') eventdb1b = eventdb1.then(make_interactive, inputs=add_file_outputs, outputs=add_file_outputs, show_progress='minimal') # deal with challenge to have fileup_output itself as input add_file_kwargs2 = dict(fn=update_db_func, inputs=[fileup_output_text, my_db_state, selection_docs_state, chunk, chunk_size, langchain_mode], outputs=add_file_outputs + [sources_text, doc_exception_text], queue=queue, api_name='add_file_api' if allow_api and allow_upload_to_user_data else None) eventdb1_api = fileup_output_text.submit(**add_file_kwargs2, show_progress='full') # note for update_user_db_func output is ignored for db def clear_textbox(): return gr.Textbox.update(value='') update_user_db_url_func = functools.partial(update_db_func, is_url=True) add_url_outputs = [url_text, langchain_mode] add_url_kwargs = dict(fn=update_user_db_url_func, inputs=[url_text, my_db_state, selection_docs_state, chunk, chunk_size, langchain_mode], outputs=add_url_outputs + [sources_text, doc_exception_text], queue=queue, api_name='add_url' if allow_api and allow_upload_to_user_data else None) eventdb2a = url_text.submit(fn=dummy_fun, inputs=url_text, outputs=url_text, queue=queue, show_progress='minimal') # work around https://github.com/gradio-app/gradio/issues/4733 eventdb2b = eventdb2a.then(make_non_interactive, inputs=add_url_outputs, outputs=add_url_outputs, show_progress='minimal') eventdb2 = eventdb2b.then(**add_url_kwargs, show_progress='full') eventdb2c = eventdb2.then(make_interactive, inputs=add_url_outputs, outputs=add_url_outputs, show_progress='minimal') update_user_db_txt_func = functools.partial(update_db_func, is_txt=True) add_text_outputs = [user_text_text, langchain_mode] add_text_kwargs = dict(fn=update_user_db_txt_func, inputs=[user_text_text, my_db_state, selection_docs_state, chunk, chunk_size, langchain_mode], outputs=add_text_outputs + [sources_text, doc_exception_text], queue=queue, api_name='add_text' if allow_api and allow_upload_to_user_data else None ) eventdb3a = user_text_text.submit(fn=dummy_fun, inputs=user_text_text, outputs=user_text_text, queue=queue, show_progress='minimal') eventdb3b = eventdb3a.then(make_non_interactive, inputs=add_text_outputs, outputs=add_text_outputs, show_progress='minimal') eventdb3 = eventdb3b.then(**add_text_kwargs, show_progress='full') eventdb3c = eventdb3.then(make_interactive, inputs=add_text_outputs, outputs=add_text_outputs, show_progress='minimal') db_events = [eventdb1a, eventdb1, eventdb1b, eventdb1_api, eventdb2a, eventdb2, eventdb2b, eventdb2c, eventdb3a, eventdb3b, eventdb3, eventdb3c] get_sources1 = functools.partial(get_sources, dbs=dbs, docs_state0=docs_state0) # if change collection source, must clear doc selections from it to avoid inconsistency def clear_doc_choice(): return gr.Dropdown.update(choices=docs_state0, value=DocumentChoice.ALL.value) langchain_mode.change(clear_doc_choice, inputs=None, outputs=document_choice, queue=False) def resize_col_tabs(x): return gr.Dropdown.update(scale=x) col_tabs_scale.change(fn=resize_col_tabs, inputs=col_tabs_scale, outputs=col_tabs, queue=False) def resize_chatbots(x, num_model_lock=0): if num_model_lock == 0: num_model_lock = 3 # 2 + 1 (which is dup of first) else: num_model_lock = 2 + num_model_lock return tuple([gr.update(height=x)] * num_model_lock) resize_chatbots_func = functools.partial(resize_chatbots, num_model_lock=len(text_outputs)) text_outputs_height.change(fn=resize_chatbots_func, inputs=text_outputs_height, outputs=[text_output, text_output2] + text_outputs, queue=False) def update_dropdown(x): return gr.Dropdown.update(choices=x, value=[docs_state0[0]]) get_sources_args = dict(fn=get_sources1, inputs=[my_db_state, langchain_mode], outputs=[file_source, docs_state], queue=queue, api_name='get_sources' if allow_api else None) eventdb7 = get_sources_btn.click(**get_sources_args) \ .then(fn=update_dropdown, inputs=docs_state, outputs=document_choice) # show button, else only show when add. Could add to above get_sources for download/dropdown, but bit much maybe show_sources1 = functools.partial(get_source_files_given_langchain_mode, dbs=dbs) eventdb8 = show_sources_btn.click(fn=show_sources1, inputs=[my_db_state, langchain_mode], outputs=sources_text, api_name='show_sources' if allow_api else None) def update_viewable_dropdown(x): return gr.Dropdown.update(choices=x, value=viewable_docs_state0[0] if len(viewable_docs_state0) > 0 else None) get_viewable_sources1 = functools.partial(get_sources, dbs=dbs, docs_state0=viewable_docs_state0) get_viewable_sources_args = dict(fn=get_viewable_sources1, inputs=[my_db_state, langchain_mode], outputs=[file_source, viewable_docs_state], queue=queue, api_name='get_viewable_sources' if allow_api else None) eventdb12 = get_viewable_sources_btn.click(**get_viewable_sources_args) \ .then(fn=update_viewable_dropdown, inputs=viewable_docs_state, outputs=view_document_choice) def show_doc(file): dummy1 = gr.update(visible=False, value=None) dummy_ret = dummy1, dummy1, dummy1, dummy1 if not isinstance(file, str): return dummy_ret if file.endswith('.md'): try: with open(file, 'rt') as f: content = f.read() return dummy1, dummy1, dummy1, gr.update(visible=True, value=content) except: return dummy_ret if file.endswith('.py'): try: with open(file, 'rt') as f: content = f.read() content = f"```python\n{content}\n```" return dummy1, dummy1, dummy1, gr.update(visible=True, value=content) except: return dummy_ret if file.endswith('.txt') or file.endswith('.rst') or file.endswith('.rtf') or file.endswith('.toml'): try: with open(file, 'rt') as f: content = f.read() content = f"```text\n{content}\n```" return dummy1, dummy1, dummy1, gr.update(visible=True, value=content) except: return dummy_ret func = None if file.endswith(".csv"): func = pd.read_csv elif file.endswith(".pickle"): func = pd.read_pickle elif file.endswith(".xls") or file.endswith("xlsx"): func = pd.read_excel elif file.endswith('.json'): func = pd.read_json elif file.endswith('.xml'): func = pd.read_xml if func is not None: try: df = func(file).head(100) except: return dummy_ret return dummy1, gr.update(visible=True, value=df), dummy1, dummy1 port = int(os.getenv('GRADIO_SERVER_PORT', '7860')) import pathlib absolute_path_string = os.path.abspath(file) url_path = pathlib.Path(absolute_path_string).as_uri() url = get_url(absolute_path_string, from_str=True) img_url = url.replace(""" """), dummy1, dummy1, dummy1 else: ip = get_local_ip() document1 = url_path.replace('file://', f'http://{ip}:{port}/') # document1 = url return gr.update(visible=True, value=f""" """), dummy1, dummy1, dummy1 else: return dummy_ret view_document_choice.select(fn=show_doc, inputs=view_document_choice, outputs=[doc_view, doc_view2, doc_view3, doc_view4]) # Get inputs to evaluate() and make_db() # don't deepcopy, can contain model itself all_kwargs = kwargs.copy() all_kwargs.update(locals()) refresh_sources1 = functools.partial(update_and_get_source_files_given_langchain_mode, **get_kwargs(update_and_get_source_files_given_langchain_mode, exclude_names=['db1s', 'langchain_mode', 'chunk', 'chunk_size'], **all_kwargs)) eventdb9 = refresh_sources_btn.click(fn=refresh_sources1, inputs=[my_db_state, langchain_mode, chunk, chunk_size], outputs=sources_text, api_name='refresh_sources' if allow_api else None) def check_admin_pass(x): return gr.update(visible=x == admin_pass) def close_admin(x): return gr.update(visible=not (x == admin_pass)) admin_pass_textbox.submit(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row, queue=False) \ .then(close_admin, inputs=admin_pass_textbox, outputs=admin_row, queue=False) def add_langchain_mode(db1s, selection_docs_state1, langchain_mode1, y): for k in db1s: set_userid(db1s[k]) langchain_modes = selection_docs_state1['langchain_modes'] langchain_mode_paths = selection_docs_state1['langchain_mode_paths'] visible_langchain_modes = selection_docs_state1['visible_langchain_modes'] user_path = None valid = True y2 = y.strip().replace(' ', '').split(',') if len(y2) >= 1: langchain_mode2 = y2[0] if len(langchain_mode2) >= 3 and langchain_mode2.isalnum(): # real restriction is: # ValueError: Expected collection name that (1) contains 3-63 characters, (2) starts and ends with an alphanumeric character, (3) otherwise contains only alphanumeric characters, underscores or hyphens (-), (4) contains no two consecutive periods (..) and (5) is not a valid IPv4 address, got me # but just make simpler user_path = y2[1] if len(y2) > 1 else None # assume scratch if don't have user_path if user_path in ['', "''"]: # for scratch spaces user_path = None if langchain_mode2 in langchain_modes_intrinsic: user_path = None textbox = "Invalid access to use internal name: %s" % langchain_mode2 valid = False langchain_mode2 = langchain_mode1 elif user_path and allow_upload_to_user_data or not user_path and allow_upload_to_my_data: langchain_mode_paths.update({langchain_mode2: user_path}) if langchain_mode2 not in visible_langchain_modes: visible_langchain_modes.append(langchain_mode2) if langchain_mode2 not in langchain_modes: langchain_modes.append(langchain_mode2) textbox = '' if user_path: makedirs(user_path, exist_ok=True) else: valid = False langchain_mode2 = langchain_mode1 textbox = "Invalid access. user allowed: %s " \ "scratch allowed: %s" % (allow_upload_to_user_data, allow_upload_to_my_data) else: valid = False langchain_mode2 = langchain_mode1 textbox = "Invalid, collection must be >=3 characters and alphanumeric" else: valid = False langchain_mode2 = langchain_mode1 textbox = "Invalid, must be like UserData2, user_path2" selection_docs_state1 = update_langchain_mode_paths(db1s, selection_docs_state1) df_langchain_mode_paths1 = get_df_langchain_mode_paths(selection_docs_state1) choices = get_langchain_choices(selection_docs_state1) if valid and not user_path: # needs to have key for it to make it known different from userdata case in _update_user_db() db1s[langchain_mode2] = [None, None] if valid: save_collection_names(langchain_modes, visible_langchain_modes, langchain_mode_paths, LangChainMode, db1s) return db1s, selection_docs_state1, gr.update(choices=choices, value=langchain_mode2), textbox, df_langchain_mode_paths1 def remove_langchain_mode(db1s, selection_docs_state1, langchain_mode1, langchain_mode2, dbsu=None): for k in db1s: set_userid(db1s[k]) assert dbsu is not None langchain_modes = selection_docs_state1['langchain_modes'] langchain_mode_paths = selection_docs_state1['langchain_mode_paths'] visible_langchain_modes = selection_docs_state1['visible_langchain_modes'] if langchain_mode2 in db1s and not allow_upload_to_my_data or \ dbsu is not None and langchain_mode2 in dbsu and not allow_upload_to_user_data or \ langchain_mode2 in langchain_modes_intrinsic: # NOTE: Doesn't fail if remove MyData, but didn't debug odd behavior seen with upload after gone textbox = "Invalid access, cannot remove %s" % langchain_mode2 df_langchain_mode_paths1 = get_df_langchain_mode_paths(selection_docs_state1) else: # change global variables if langchain_mode2 in visible_langchain_modes: visible_langchain_modes.remove(langchain_mode2) textbox = "" else: textbox = "%s was not visible" % langchain_mode2 if langchain_mode2 in langchain_modes: langchain_modes.remove(langchain_mode2) if langchain_mode2 in langchain_mode_paths: langchain_mode_paths.pop(langchain_mode2) if langchain_mode2 in db1s: # remove db entirely, so not in list, else need to manage visible list in update_langchain_mode_paths() # FIXME: Remove location? if langchain_mode2 != LangChainMode.MY_DATA.value: # don't remove last MyData, used as user hash db1s.pop(langchain_mode2) # only show selection_docs_state1 = update_langchain_mode_paths(db1s, selection_docs_state1) df_langchain_mode_paths1 = get_df_langchain_mode_paths(selection_docs_state1) save_collection_names(langchain_modes, visible_langchain_modes, langchain_mode_paths, LangChainMode, db1s) return db1s, selection_docs_state1, \ gr.update(choices=get_langchain_choices(selection_docs_state1), value=langchain_mode2), textbox, df_langchain_mode_paths1 new_langchain_mode_text.submit(fn=add_langchain_mode, inputs=[my_db_state, selection_docs_state, langchain_mode, new_langchain_mode_text], outputs=[my_db_state, selection_docs_state, langchain_mode, new_langchain_mode_text, langchain_mode_path_text], api_name='new_langchain_mode_text' if allow_api and allow_upload_to_user_data else None) remove_langchain_mode_func = functools.partial(remove_langchain_mode, dbsu=dbs) remove_langchain_mode_text.submit(fn=remove_langchain_mode_func, inputs=[my_db_state, selection_docs_state, langchain_mode, remove_langchain_mode_text], outputs=[my_db_state, selection_docs_state, langchain_mode, remove_langchain_mode_text, langchain_mode_path_text], api_name='remove_langchain_mode_text' if allow_api and allow_upload_to_user_data else None) def update_langchain_gr(db1s, selection_docs_state1, langchain_mode1): for k in db1s: set_userid(db1s[k]) langchain_modes = selection_docs_state1['langchain_modes'] langchain_mode_paths = selection_docs_state1['langchain_mode_paths'] visible_langchain_modes = selection_docs_state1['visible_langchain_modes'] # in-place # update user collaborative collections update_langchain(langchain_modes, visible_langchain_modes, langchain_mode_paths, '') # update scratch single-user collections user_hash = db1s.get(LangChainMode.MY_DATA.value, '')[1] update_langchain(langchain_modes, visible_langchain_modes, langchain_mode_paths, user_hash) selection_docs_state1 = update_langchain_mode_paths(db1s, selection_docs_state1) df_langchain_mode_paths1 = get_df_langchain_mode_paths(selection_docs_state1) return selection_docs_state1, \ gr.update(choices=get_langchain_choices(selection_docs_state1), value=langchain_mode1), df_langchain_mode_paths1 load_langchain.click(fn=update_langchain_gr, inputs=[my_db_state, selection_docs_state, langchain_mode], outputs=[selection_docs_state, langchain_mode, langchain_mode_path_text], api_name='load_langchain' if allow_api and allow_upload_to_user_data else None) inputs_list, inputs_dict = get_inputs_list(all_kwargs, kwargs['model_lower'], model_id=1) inputs_list2, inputs_dict2 = get_inputs_list(all_kwargs, kwargs['model_lower'], model_id=2) from functools import partial kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list} # ensure present for k in inputs_kwargs_list: assert k in kwargs_evaluate, "Missing %s" % k def evaluate_nochat(*args1, default_kwargs1=None, str_api=False, **kwargs1): args_list = list(args1) if str_api: user_kwargs = args_list[len(input_args_list)] assert isinstance(user_kwargs, str) user_kwargs = ast.literal_eval(user_kwargs) else: user_kwargs = {k: v for k, v in zip(eval_func_param_names, args_list[len(input_args_list):])} # only used for submit_nochat_api user_kwargs['chat'] = False if 'stream_output' not in user_kwargs: user_kwargs['stream_output'] = False if 'langchain_mode' not in user_kwargs: # if user doesn't specify, then assume disabled, not use default user_kwargs['langchain_mode'] = 'Disabled' if 'langchain_action' not in user_kwargs: user_kwargs['langchain_action'] = LangChainAction.QUERY.value if 'langchain_agents' not in user_kwargs: user_kwargs['langchain_agents'] = [] set1 = set(list(default_kwargs1.keys())) set2 = set(eval_func_param_names) assert set1 == set2, "Set diff: %s %s: %s" % (set1, set2, set1.symmetric_difference(set2)) # correct ordering. Note some things may not be in default_kwargs, so can't be default of user_kwargs.get() model_state1 = args_list[0] my_db_state1 = args_list[1] selection_docs_state1 = args_list[2] args_list = [user_kwargs[k] if k in user_kwargs and user_kwargs[k] is not None else default_kwargs1[k] for k in eval_func_param_names] assert len(args_list) == len(eval_func_param_names) args_list = [model_state1, my_db_state1, selection_docs_state1] + args_list try: for res_dict in evaluate(*tuple(args_list), **kwargs1): if str_api: # full return of dict yield res_dict elif kwargs['langchain_mode'] == 'Disabled': yield fix_text_for_gradio(res_dict['response']) else: yield '
' + fix_text_for_gradio(res_dict['response']) finally: clear_torch_cache() clear_embeddings(user_kwargs['langchain_mode'], my_db_state1) fun = partial(evaluate_nochat, default_kwargs1=default_kwargs, str_api=False, **kwargs_evaluate) fun2 = partial(evaluate_nochat, default_kwargs1=default_kwargs, str_api=False, **kwargs_evaluate) fun_with_dict_str = partial(evaluate_nochat, default_kwargs1=default_kwargs, str_api=True, **kwargs_evaluate ) dark_mode_btn.click( None, None, None, _js=get_dark_js(), api_name="dark" if allow_api else None, queue=False, ) def visible_toggle(x): x = 'off' if x == 'on' else 'on' return x, gr.Column.update(visible=True if x == 'on' else False) side_bar_btn.click(fn=visible_toggle, inputs=side_bar_text, outputs=[side_bar_text, side_bar], queue=False) submit_buttons_btn.click(fn=visible_toggle, inputs=submit_buttons_text, outputs=[submit_buttons_text, submit_buttons], queue=False) # examples after submit or any other buttons for chat or no chat if kwargs['examples'] is not None and kwargs['show_examples']: gr.Examples(examples=kwargs['examples'], inputs=inputs_list) # Score def score_last_response(*args, nochat=False, num_model_lock=0): try: if num_model_lock > 0: # then lock way args_list = list(args).copy() outputs = args_list[-num_model_lock:] score_texts1 = [] for output in outputs: # same input, put into form good for _score_last_response() args_list[-1] = output score_texts1.append( _score_last_response(*tuple(args_list), nochat=nochat, num_model_lock=num_model_lock, prefix='')) if len(score_texts1) > 1: return "Response Scores: %s" % ' '.join(score_texts1) else: return "Response Scores: %s" % score_texts1[0] else: return _score_last_response(*args, nochat=nochat, num_model_lock=num_model_lock) finally: clear_torch_cache() def _score_last_response(*args, nochat=False, num_model_lock=0, prefix='Response Score: '): """ Similar to user() """ args_list = list(args) smodel = score_model_state0['model'] stokenizer = score_model_state0['tokenizer'] sdevice = score_model_state0['device'] if memory_restriction_level > 0: max_length_tokenize = 768 - 256 if memory_restriction_level <= 2 else 512 - 256 elif hasattr(stokenizer, 'model_max_length'): max_length_tokenize = stokenizer.model_max_length else: # limit to 1024, not worth OOMing on reward score max_length_tokenize = 2048 - 1024 cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM if not nochat: history = args_list[-1] if history is None: history = [] if smodel is not None and \ stokenizer is not None and \ sdevice is not None and \ history is not None and len(history) > 0 and \ history[-1] is not None and \ len(history[-1]) >= 2: os.environ['TOKENIZERS_PARALLELISM'] = 'false' question = history[-1][0] answer = history[-1][1] else: return '%sNA' % prefix else: answer = args_list[-1] instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat') question = args_list[instruction_nochat_arg_id] if question is None: return '%sBad Question' % prefix if answer is None: return '%sBad Answer' % prefix try: score = score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_len) finally: clear_torch_cache() if isinstance(score, str): return '%sNA' % prefix return '{}{:.1%}'.format(prefix, score) def noop_score_last_response(*args, **kwargs): return "Response Score: Disabled" if kwargs['score_model']: score_fun = score_last_response else: score_fun = noop_score_last_response score_args = dict(fn=score_fun, inputs=inputs_list + [text_output], outputs=[score_text], ) score_args2 = dict(fn=partial(score_fun), inputs=inputs_list2 + [text_output2], outputs=[score_text2], ) score_fun_func = functools.partial(score_fun, num_model_lock=len(text_outputs)) all_score_args = dict(fn=score_fun_func, inputs=inputs_list + text_outputs, outputs=score_text, ) score_args_nochat = dict(fn=partial(score_fun, nochat=True), inputs=inputs_list + [text_output_nochat], outputs=[score_text_nochat], ) def update_history(*args, undo=False, retry=False, sanitize_user_prompt=False): """ User that fills history for bot :param args: :param undo: :param retry: :param sanitize_user_prompt: :return: """ args_list = list(args) user_message = args_list[eval_func_param_names.index('instruction')] # chat only input1 = args_list[eval_func_param_names.index('iinput')] # chat only prompt_type1 = args_list[eval_func_param_names.index('prompt_type')] langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')] langchain_action1 = args_list[eval_func_param_names.index('langchain_action')] langchain_agents1 = args_list[eval_func_param_names.index('langchain_agents')] document_subset1 = args_list[eval_func_param_names.index('document_subset')] document_choice1 = args_list[eval_func_param_names.index('document_choice')] if not prompt_type1: # shouldn't have to specify if CLI launched model prompt_type1 = kwargs['prompt_type'] # apply back args_list[eval_func_param_names.index('prompt_type')] = prompt_type1 if input1 and not user_message.endswith(':'): user_message1 = user_message + ":" + input1 elif input1: user_message1 = user_message + input1 else: user_message1 = user_message if sanitize_user_prompt: from better_profanity import profanity user_message1 = profanity.censor(user_message1) history = args_list[-1] if history is None: # bad history history = [] history = history.copy() if undo: if len(history) > 0: history.pop() return history if retry: if history: history[-1][1] = None return history if user_message1 in ['', None, '\n']: if not allow_empty_instruction(langchain_mode1, document_subset1, langchain_action1): # reject non-retry submit/enter return history user_message1 = fix_text_for_gradio(user_message1) return history + [[user_message1, None]] def user(*args, undo=False, retry=False, sanitize_user_prompt=False): return update_history(*args, undo=undo, retry=retry, sanitize_user_prompt=sanitize_user_prompt) def all_user(*args, undo=False, retry=False, sanitize_user_prompt=False, num_model_lock=0): args_list = list(args) history_list = args_list[-num_model_lock:] assert len(history_list) > 0, "Bad history list: %s" % history_list for hi, history in enumerate(history_list): if num_model_lock > 0: hargs = args_list[:-num_model_lock].copy() else: hargs = args_list.copy() hargs += [history] history_list[hi] = update_history(*hargs, undo=undo, retry=retry, sanitize_user_prompt=sanitize_user_prompt) if len(history_list) > 1: return tuple(history_list) else: return history_list[0] def get_model_max_length(model_state1): if model_state1 and not isinstance(model_state1["tokenizer"], str): tokenizer = model_state1["tokenizer"] elif model_state0 and not isinstance(model_state0["tokenizer"], str): tokenizer = model_state0["tokenizer"] else: tokenizer = None if tokenizer is not None: return tokenizer.model_max_length else: return 2000 def prep_bot(*args, retry=False, which_model=0): """ :param args: :param retry: :param which_model: identifies which model if doing model_lock API only called for which_model=0, default for inputs_list, but rest should ignore inputs_list :return: last element is True if should run bot, False if should just yield history """ isize = len(input_args_list) + 1 # states + chat history # don't deepcopy, can contain model itself args_list = list(args).copy() model_state1 = args_list[-isize] my_db_state1 = args_list[-isize + 1] selection_docs_state1 = args_list[-isize + 2] history = args_list[-1] prompt_type1 = args_list[eval_func_param_names.index('prompt_type')] prompt_dict1 = args_list[eval_func_param_names.index('prompt_dict')] if model_state1['model'] is None or model_state1['model'] == no_model_str: return history, None, None, None args_list = args_list[:-isize] # only keep rest needed for evaluate() langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')] add_chat_history_to_context1 = args_list[eval_func_param_names.index('add_chat_history_to_context')] langchain_action1 = args_list[eval_func_param_names.index('langchain_action')] langchain_agents1 = args_list[eval_func_param_names.index('langchain_agents')] document_subset1 = args_list[eval_func_param_names.index('document_subset')] document_choice1 = args_list[eval_func_param_names.index('document_choice')] if not history: print("No history", flush=True) history = [] return history, None, None, None instruction1 = history[-1][0] if retry and history: # if retry, pop history and move onto bot stuff instruction1 = history[-1][0] history[-1][1] = None elif not instruction1: if not allow_empty_instruction(langchain_mode1, document_subset1, langchain_action1): # if not retrying, then reject empty query return history, None, None, None elif len(history) > 0 and history[-1][1] not in [None, '']: # reject submit button if already filled and not retrying # None when not filling with '' to keep client happy return history, None, None, None # shouldn't have to specify in API prompt_type if CLI launched model, so prefer global CLI one if have it prompt_type1, prompt_dict1 = update_prompt(prompt_type1, prompt_dict1, model_state1, which_model=which_model) # apply back to args_list for evaluate() args_list[eval_func_param_names.index('prompt_type')] = prompt_type1 args_list[eval_func_param_names.index('prompt_dict')] = prompt_dict1 chat1 = args_list[eval_func_param_names.index('chat')] model_max_length1 = get_model_max_length(model_state1) context1 = history_to_context(history, langchain_mode1, add_chat_history_to_context1, prompt_type1, prompt_dict1, chat1, model_max_length1, memory_restriction_level, kwargs['keep_sources_in_context']) args_list[0] = instruction1 # override original instruction with history from user args_list[2] = context1 fun1 = partial(evaluate, model_state1, my_db_state1, selection_docs_state1, *tuple(args_list), **kwargs_evaluate) return history, fun1, langchain_mode1, my_db_state1 def get_response(fun1, history): """ bot that consumes history for user input instruction (from input_list) itself is not consumed by bot :return: """ if not fun1: yield history, '' return try: for output_fun in fun1(): output = output_fun['response'] extra = output_fun['sources'] # FIXME: can show sources in separate text box etc. # ensure good visually, else markdown ignores multiple \n bot_message = fix_text_for_gradio(output) history[-1][1] = bot_message yield history, '' except StopIteration: yield history, '' except RuntimeError as e: if "generator raised StopIteration" in str(e): # assume last entry was bad, undo history.pop() yield history, '' else: if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None: history[-1][1] = '' yield history, str(e) raise except Exception as e: # put error into user input ex = "Exception: %s" % str(e) if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None: history[-1][1] = '' yield history, ex raise finally: clear_torch_cache() return def clear_embeddings(langchain_mode1, db1s): # clear any use of embedding that sits on GPU, else keeps accumulating GPU usage even if clear torch cache if db_type == 'chroma' and langchain_mode1 not in ['LLM', 'Disabled', None, '']: from gpt_langchain import clear_embedding db = dbs.get('langchain_mode1') if db is not None and not isinstance(db, str): clear_embedding(db) if db1s is not None and langchain_mode1 in db1s: db1 = db1s[langchain_mode1] if len(db1) == 2: clear_embedding(db1[0]) def bot(*args, retry=False): history, fun1, langchain_mode1, db1 = prep_bot(*args, retry=retry) try: for res in get_response(fun1, history): yield res finally: clear_torch_cache() clear_embeddings(langchain_mode1, db1) def all_bot(*args, retry=False, model_states1=None): args_list = list(args).copy() chatbots = args_list[-len(model_states1):] args_list0 = args_list[:-len(model_states1)] # same for all models exceptions = [] stream_output1 = args_list[eval_func_param_names.index('stream_output')] max_time1 = args_list[eval_func_param_names.index('max_time')] langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')] isize = len(input_args_list) + 1 # states + chat history db1s = None try: gen_list = [] for chatboti, (chatbot1, model_state1) in enumerate(zip(chatbots, model_states1)): args_list1 = args_list0.copy() args_list1.insert(-isize + 2, model_state1) # insert at -2 so is at -3, and after chatbot1 added, at -4 # if at start, have None in response still, replace with '' so client etc. acts like normal # assumes other parts of code treat '' and None as if no response yet from bot # can't do this later in bot code as racy with threaded generators if len(chatbot1) > 0 and len(chatbot1[-1]) == 2 and chatbot1[-1][1] is None: chatbot1[-1][1] = '' args_list1.append(chatbot1) # so consistent with prep_bot() # with model_state1 at -3, my_db_state1 at -2, and history(chatbot) at -1 # langchain_mode1 and my_db_state1 should be same for every bot history, fun1, langchain_mode1, db1s = prep_bot(*tuple(args_list1), retry=retry, which_model=chatboti) gen1 = get_response(fun1, history) if stream_output1: gen1 = TimeoutIterator(gen1, timeout=0.01, sentinel=None, raise_on_exception=False) # else timeout will truncate output for non-streaming case gen_list.append(gen1) bots_old = chatbots.copy() exceptions_old = [''] * len(bots_old) tgen0 = time.time() for res1 in itertools.zip_longest(*gen_list): if time.time() - tgen0 > max_time1: print("Took too long: %s" % max_time1, flush=True) break bots = [x[0] if x is not None and not isinstance(x, BaseException) else y for x, y in zip(res1, bots_old)] bots_old = bots.copy() def larger_str(x, y): return x if len(x) > len(y) else y exceptions = [x[1] if x is not None and not isinstance(x, BaseException) else larger_str(str(x), y) for x, y in zip(res1, exceptions_old)] exceptions_old = exceptions.copy() def choose_exc(x): # don't expose ports etc. to exceptions window if is_public: return "Endpoint unavailable or failed" else: return x exceptions_str = '\n'.join( ['Model %s: %s' % (iix, choose_exc(x)) for iix, x in enumerate(exceptions) if x not in [None, '', 'None']]) if len(bots) > 1: yield tuple(bots + [exceptions_str]) else: yield bots[0], exceptions_str if exceptions: exceptions = [x for x in exceptions if x not in ['', None, 'None']] if exceptions: print("Generate exceptions: %s" % exceptions, flush=True) finally: clear_torch_cache() clear_embeddings(langchain_mode1, db1s) # NORMAL MODEL user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']), inputs=inputs_list + [text_output], outputs=text_output, ) bot_args = dict(fn=bot, inputs=inputs_list + [model_state, my_db_state, selection_docs_state] + [text_output], outputs=[text_output, chat_exception_text], ) retry_bot_args = dict(fn=functools.partial(bot, retry=True), inputs=inputs_list + [model_state, my_db_state, selection_docs_state] + [text_output], outputs=[text_output, chat_exception_text], ) retry_user_args = dict(fn=functools.partial(user, retry=True), inputs=inputs_list + [text_output], outputs=text_output, ) undo_user_args = dict(fn=functools.partial(user, undo=True), inputs=inputs_list + [text_output], outputs=text_output, ) # MODEL2 user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']), inputs=inputs_list2 + [text_output2], outputs=text_output2, ) bot_args2 = dict(fn=bot, inputs=inputs_list2 + [model_state2, my_db_state, selection_docs_state] + [text_output2], outputs=[text_output2, chat_exception_text], ) retry_bot_args2 = dict(fn=functools.partial(bot, retry=True), inputs=inputs_list2 + [model_state2, my_db_state, selection_docs_state] + [text_output2], outputs=[text_output2, chat_exception_text], ) retry_user_args2 = dict(fn=functools.partial(user, retry=True), inputs=inputs_list2 + [text_output2], outputs=text_output2, ) undo_user_args2 = dict(fn=functools.partial(user, undo=True), inputs=inputs_list2 + [text_output2], outputs=text_output2, ) # MODEL N all_user_args = dict(fn=functools.partial(all_user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], num_model_lock=len(text_outputs), ), inputs=inputs_list + text_outputs, outputs=text_outputs, ) all_bot_args = dict(fn=functools.partial(all_bot, model_states1=model_states), inputs=inputs_list + [my_db_state, selection_docs_state] + text_outputs, outputs=text_outputs + [chat_exception_text], ) all_retry_bot_args = dict(fn=functools.partial(all_bot, model_states1=model_states, retry=True), inputs=inputs_list + [my_db_state, selection_docs_state] + text_outputs, outputs=text_outputs + [chat_exception_text], ) all_retry_user_args = dict(fn=functools.partial(all_user, retry=True, sanitize_user_prompt=kwargs['sanitize_user_prompt'], num_model_lock=len(text_outputs), ), inputs=inputs_list + text_outputs, outputs=text_outputs, ) all_undo_user_args = dict(fn=functools.partial(all_user, undo=True, sanitize_user_prompt=kwargs['sanitize_user_prompt'], num_model_lock=len(text_outputs), ), inputs=inputs_list + text_outputs, outputs=text_outputs, ) def clear_instruct(): return gr.Textbox.update(value='') def deselect_radio_chats(): return gr.update(value=None) def clear_all(): return gr.Textbox.update(value=''), gr.Textbox.update(value=''), gr.update(value=None), \ gr.Textbox.update(value=''), gr.Textbox.update(value='') if kwargs['model_states']: submits1 = submits2 = submits3 = [] submits4 = [] fun_source = [instruction.submit, submit.click, retry_btn.click] fun_name = ['instruction', 'submit', 'retry'] user_args = [all_user_args, all_user_args, all_retry_user_args] bot_args = [all_bot_args, all_bot_args, all_retry_bot_args] for userargs1, botarg1, funn1, funs1 in zip(user_args, bot_args, fun_name, fun_source): submit_event11 = funs1(fn=dummy_fun, inputs=instruction, outputs=instruction, queue=queue) submit_event1a = submit_event11.then(**userargs1, queue=queue, api_name='%s' % funn1 if allow_api else None) # if hit enter on new instruction for submitting new query, no longer the saved chat submit_event1b = submit_event1a.then(clear_all, inputs=None, outputs=[instruction, iinput, radio_chats, score_text, score_text2], queue=queue) submit_event1c = submit_event1b.then(**botarg1, api_name='%s_bot' % funn1 if allow_api else None, queue=queue) submit_event1d = submit_event1c.then(**all_score_args, api_name='%s_bot_score' % funn1 if allow_api else None, queue=queue) submits1.extend([submit_event1a, submit_event1b, submit_event1c, submit_event1d]) # if undo, no longer the saved chat submit_event4 = undo.click(fn=dummy_fun, inputs=instruction, outputs=instruction, queue=queue) \ .then(**all_undo_user_args, api_name='undo' if allow_api else None) \ .then(clear_all, inputs=None, outputs=[instruction, iinput, radio_chats, score_text, score_text2], queue=queue) \ .then(**all_score_args, api_name='undo_score' if allow_api else None) submits4 = [submit_event4] else: # in case 2nd model, consume instruction first, so can clear quickly # bot doesn't consume instruction itself, just history from user, so why works submit_event11 = instruction.submit(fn=dummy_fun, inputs=instruction, outputs=instruction, queue=queue) submit_event1a = submit_event11.then(**user_args, queue=queue, api_name='instruction' if allow_api else None) # if hit enter on new instruction for submitting new query, no longer the saved chat submit_event1a2 = submit_event1a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue) submit_event1b = submit_event1a2.then(**user_args2, api_name='instruction2' if allow_api else None) submit_event1c = submit_event1b.then(clear_instruct, None, instruction) \ .then(clear_instruct, None, iinput) submit_event1d = submit_event1c.then(**bot_args, api_name='instruction_bot' if allow_api else None, queue=queue) submit_event1e = submit_event1d.then(**score_args, api_name='instruction_bot_score' if allow_api else None, queue=queue) submit_event1f = submit_event1e.then(**bot_args2, api_name='instruction_bot2' if allow_api else None, queue=queue) submit_event1g = submit_event1f.then(**score_args2, api_name='instruction_bot_score2' if allow_api else None, queue=queue) submits1 = [submit_event1a, submit_event1a2, submit_event1b, submit_event1c, submit_event1d, submit_event1e, submit_event1f, submit_event1g] submit_event21 = submit.click(fn=dummy_fun, inputs=instruction, outputs=instruction, queue=queue) submit_event2a = submit_event21.then(**user_args, api_name='submit' if allow_api else None) # if submit new query, no longer the saved chat submit_event2a2 = submit_event2a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue) submit_event2b = submit_event2a2.then(**user_args2, api_name='submit2' if allow_api else None) submit_event2c = submit_event2b.then(clear_all, inputs=None, outputs=[instruction, iinput, radio_chats, score_text, score_text2], queue=queue) submit_event2d = submit_event2c.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue) submit_event2e = submit_event2d.then(**score_args, api_name='submit_bot_score' if allow_api else None, queue=queue) submit_event2f = submit_event2e.then(**bot_args2, api_name='submit_bot2' if allow_api else None, queue=queue) submit_event2g = submit_event2f.then(**score_args2, api_name='submit_bot_score2' if allow_api else None, queue=queue) submits2 = [submit_event2a, submit_event2a2, submit_event2b, submit_event2c, submit_event2d, submit_event2e, submit_event2f, submit_event2g] submit_event31 = retry_btn.click(fn=dummy_fun, inputs=instruction, outputs=instruction, queue=queue) submit_event3a = submit_event31.then(**user_args, api_name='retry' if allow_api else None) # if retry, no longer the saved chat submit_event3a2 = submit_event3a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue) submit_event3b = submit_event3a2.then(**user_args2, api_name='retry2' if allow_api else None) submit_event3c = submit_event3b.then(clear_instruct, None, instruction) \ .then(clear_instruct, None, iinput) submit_event3d = submit_event3c.then(**retry_bot_args, api_name='retry_bot' if allow_api else None, queue=queue) submit_event3e = submit_event3d.then(**score_args, api_name='retry_bot_score' if allow_api else None, queue=queue) submit_event3f = submit_event3e.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None, queue=queue) submit_event3g = submit_event3f.then(**score_args2, api_name='retry_bot_score2' if allow_api else None, queue=queue) submits3 = [submit_event3a, submit_event3a2, submit_event3b, submit_event3c, submit_event3d, submit_event3e, submit_event3f, submit_event3g] # if undo, no longer the saved chat submit_event4 = undo.click(fn=dummy_fun, inputs=instruction, outputs=instruction, queue=queue) \ .then(**undo_user_args, api_name='undo' if allow_api else None) \ .then(**undo_user_args2, api_name='undo2' if allow_api else None) \ .then(clear_all, inputs=None, outputs=[instruction, iinput, radio_chats, score_text, score_text2], queue=queue) \ .then(**score_args, api_name='undo_score' if allow_api else None) \ .then(**score_args2, api_name='undo_score2' if allow_api else None) submits4 = [submit_event4] # MANAGE CHATS def dedup(short_chat, short_chats): if short_chat not in short_chats: return short_chat for i in range(1, 1000): short_chat_try = short_chat + "_" + str(i) if short_chat_try not in short_chats: return short_chat_try # fallback and hope for best short_chat = short_chat + "_" + str(random.random()) return short_chat def get_short_chat(x, short_chats, short_len=20, words=4): if x and len(x[0]) == 2 and x[0][0] is not None: short_chat = ' '.join(x[0][0][:short_len].split(' ')[:words]).strip() if not short_chat: # e.g.summarization, try using answer short_chat = ' '.join(x[0][1][:short_len].split(' ')[:words]).strip() if not short_chat: short_chat = 'Unk' short_chat = dedup(short_chat, short_chats) else: short_chat = None return short_chat def is_chat_same(x, y): #

etc. added in chat, try to remove some of that to help avoid dup entries when hit new conversation is_same = True # length of conversation has to be same if len(x) != len(y): return False if len(x) != len(y): return False for stepx, stepy in zip(x, y): if len(stepx) != len(stepy): # something off with a conversation return False for stepxx, stepyy in zip(stepx, stepy): if len(stepxx) != len(stepyy): # something off with a conversation return False if len(stepxx) != 2: # something off return False if len(stepyy) != 2: # something off return False questionx = stepxx[0].replace('

', '').replace('

', '') if stepxx[0] is not None else None answerx = stepxx[1].replace('

', '').replace('

', '') if stepxx[1] is not None else None questiony = stepyy[0].replace('

', '').replace('

', '') if stepyy[0] is not None else None answery = stepyy[1].replace('

', '').replace('

', '') if stepyy[1] is not None else None if questionx != questiony or answerx != answery: return False return is_same def save_chat(*args, chat_is_list=False): args_list = list(args) if not chat_is_list: # list of chatbot histories, # can't pass in list with list of chatbot histories and state due to gradio limits chat_list = args_list[:-1] else: assert len(args_list) == 2 chat_list = args_list[0] # if old chat file with single chatbot, get into shape if isinstance(chat_list, list) and len(chat_list) > 0 and isinstance(chat_list[0], list) and len( chat_list[0]) == 2 and isinstance(chat_list[0][0], str) and isinstance(chat_list[0][1], str): chat_list = [chat_list] # remove None histories chat_list_not_none = [x for x in chat_list if x and len(x) > 0 and len(x[0]) == 2 and x[0][1] is not None] chat_list_none = [x for x in chat_list if x not in chat_list_not_none] if len(chat_list_none) > 0 and len(chat_list_not_none) == 0: raise ValueError("Invalid chat file") # dict with keys of short chat names, values of list of list of chatbot histories chat_state1 = args_list[-1] short_chats = list(chat_state1.keys()) if len(chat_list_not_none) > 0: # make short_chat key from only first history, based upon question that is same anyways chat_first = chat_list_not_none[0] short_chat = get_short_chat(chat_first, short_chats) if short_chat: old_chat_lists = list(chat_state1.values()) already_exists = any([is_chat_same(chat_list, x) for x in old_chat_lists]) if not already_exists: chat_state1[short_chat] = chat_list.copy() # reverse so newest at top choices = list(chat_state1.keys()).copy() choices.reverse() return chat_state1, gr.update(choices=choices, value=None) def switch_chat(chat_key, chat_state1, num_model_lock=0): chosen_chat = chat_state1[chat_key] # deal with possible different size of chat list vs. current list ret_chat = [None] * (2 + num_model_lock) for chati in range(0, 2 + num_model_lock): ret_chat[chati % len(ret_chat)] = chosen_chat[chati % len(chosen_chat)] return tuple(ret_chat) def clear_texts(*args): return tuple([gr.Textbox.update(value='')] * len(args)) def clear_scores(): return gr.Textbox.update(value=res_value), \ gr.Textbox.update(value='Response Score: NA'), \ gr.Textbox.update(value='Response Score: NA') switch_chat_fun = functools.partial(switch_chat, num_model_lock=len(text_outputs)) radio_chats.input(switch_chat_fun, inputs=[radio_chats, chat_state], outputs=[text_output, text_output2] + text_outputs) \ .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) def remove_chat(chat_key, chat_state1): if isinstance(chat_key, str): chat_state1.pop(chat_key, None) return gr.update(choices=list(chat_state1.keys()), value=None), chat_state1 remove_chat_event = remove_chat_btn.click(remove_chat, inputs=[radio_chats, chat_state], outputs=[radio_chats, chat_state], queue=False, api_name='remove_chat') def get_chats1(chat_state1): base = 'chats' makedirs(base, exist_ok=True) filename = os.path.join(base, 'chats_%s.json' % str(uuid.uuid4())) with open(filename, "wt") as f: f.write(json.dumps(chat_state1, indent=2)) return filename export_chat_event = export_chats_btn.click(get_chats1, inputs=chat_state, outputs=chats_file, queue=False, api_name='export_chats' if allow_api else None) def add_chats_from_file(file, chat_state1, radio_chats1, chat_exception_text1): if not file: return None, chat_state1, gr.update(choices=list(chat_state1.keys()), value=None), chat_exception_text1 if isinstance(file, str): files = [file] else: files = file if not files: return None, chat_state1, gr.update(choices=list(chat_state1.keys()), value=None), chat_exception_text1 chat_exception_list = [] for file1 in files: try: if hasattr(file1, 'name'): file1 = file1.name with open(file1, "rt") as f: new_chats = json.loads(f.read()) for chat1_k, chat1_v in new_chats.items(): # ignore chat1_k, regenerate and de-dup to avoid loss chat_state1, _ = save_chat(chat1_v, chat_state1, chat_is_list=True) except BaseException as e: t, v, tb = sys.exc_info() ex = ''.join(traceback.format_exception(t, v, tb)) ex_str = "File %s exception: %s" % (file1, str(e)) print(ex_str, flush=True) chat_exception_list.append(ex_str) chat_exception_text1 = '\n'.join(chat_exception_list) return None, chat_state1, gr.update(choices=list(chat_state1.keys()), value=None), chat_exception_text1 # note for update_user_db_func output is ignored for db chatup_change_event = chatsup_output.change(add_chats_from_file, inputs=[chatsup_output, chat_state, radio_chats, chat_exception_text], outputs=[chatsup_output, chat_state, radio_chats, chat_exception_text], queue=False, api_name='add_to_chats' if allow_api else None) clear_chat_event = clear_chat_btn.click(fn=clear_texts, inputs=[text_output, text_output2] + text_outputs, outputs=[text_output, text_output2] + text_outputs, queue=False, api_name='clear' if allow_api else None) \ .then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False) \ .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) clear_event = save_chat_btn.click(save_chat, inputs=[text_output, text_output2] + text_outputs + [chat_state], outputs=[chat_state, radio_chats], api_name='save_chat' if allow_api else None) if kwargs['score_model']: clear_event2 = clear_event.then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) # NOTE: clear of instruction/iinput for nochat has to come after score, # because score for nochat consumes actual textbox, while chat consumes chat history filled by user() no_chat_args = dict(fn=fun, inputs=[model_state, my_db_state, selection_docs_state] + inputs_list, outputs=text_output_nochat, queue=queue, ) submit_event_nochat = submit_nochat.click(**no_chat_args, api_name='submit_nochat' if allow_api else None) \ .then(clear_torch_cache) \ .then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None, queue=queue) \ .then(clear_instruct, None, instruction_nochat) \ .then(clear_instruct, None, iinput_nochat) \ .then(clear_torch_cache) # copy of above with text box submission submit_event_nochat2 = instruction_nochat.submit(**no_chat_args) \ .then(clear_torch_cache) \ .then(**score_args_nochat, queue=queue) \ .then(clear_instruct, None, instruction_nochat) \ .then(clear_instruct, None, iinput_nochat) \ .then(clear_torch_cache) submit_event_nochat_api = submit_nochat_api.click(fun_with_dict_str, inputs=[model_state, my_db_state, selection_docs_state, inputs_dict_str], outputs=text_output_nochat_api, queue=True, # required for generator api_name='submit_nochat_api' if allow_api else None) \ .then(clear_torch_cache) def load_model(model_name, lora_weights, server_name, model_state_old, prompt_type_old, load_8bit, use_gpu_id, gpu_id): # ensure no API calls reach here if is_public: raise RuntimeError("Illegal access for %s" % model_name) # ensure old model removed from GPU memory if kwargs['debug']: print("Pre-switch pre-del GPU memory: %s" % get_torch_allocated(), flush=True) model0 = model_state0['model'] if isinstance(model_state_old['model'], str) and model0 is not None: # best can do, move model loaded at first to CPU model0.cpu() if model_state_old['model'] is not None and not isinstance(model_state_old['model'], str): try: model_state_old['model'].cpu() except Exception as e: # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data! print("Unable to put model on CPU: %s" % str(e), flush=True) del model_state_old['model'] model_state_old['model'] = None if model_state_old['tokenizer'] is not None and not isinstance(model_state_old['tokenizer'], str): del model_state_old['tokenizer'] model_state_old['tokenizer'] = None clear_torch_cache() if kwargs['debug']: print("Pre-switch post-del GPU memory: %s" % get_torch_allocated(), flush=True) if model_name is None or model_name == no_model_str: # no-op if no model, just free memory # no detranscribe needed for model, never go into evaluate lora_weights = no_lora_str server_name = no_server_str return [None, None, None, model_name, server_name], \ model_name, lora_weights, server_name, prompt_type_old, \ gr.Slider.update(maximum=256), \ gr.Slider.update(maximum=256) # don't deepcopy, can contain model itself all_kwargs1 = all_kwargs.copy() all_kwargs1['base_model'] = model_name.strip() all_kwargs1['load_8bit'] = load_8bit all_kwargs1['use_gpu_id'] = use_gpu_id all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe model_lower = model_name.strip().lower() if model_lower in inv_prompt_type_to_model_lower: prompt_type1 = inv_prompt_type_to_model_lower[model_lower] else: prompt_type1 = prompt_type_old # detranscribe if lora_weights == no_lora_str: lora_weights = '' all_kwargs1['lora_weights'] = lora_weights.strip() if server_name == no_server_str: server_name = '' all_kwargs1['inference_server'] = server_name.strip() model1, tokenizer1, device1 = get_model(reward_type=False, **get_kwargs(get_model, exclude_names=['reward_type'], **all_kwargs1)) clear_torch_cache() tokenizer_base_model = model_name prompt_dict1, error0 = get_prompt(prompt_type1, '', chat=False, context='', reduced=False, making_context=False, return_dict=True) model_state_new = dict(model=model1, tokenizer=tokenizer1, device=device1, base_model=model_name, tokenizer_base_model=tokenizer_base_model, lora_weights=lora_weights, inference_server=server_name, prompt_type=prompt_type1, prompt_dict=prompt_dict1, ) max_max_new_tokens1 = get_max_max_new_tokens(model_state_new, **kwargs) if kwargs['debug']: print("Post-switch GPU memory: %s" % get_torch_allocated(), flush=True) return model_state_new, model_name, lora_weights, server_name, prompt_type1, \ gr.Slider.update(maximum=max_max_new_tokens1), \ gr.Slider.update(maximum=max_max_new_tokens1) def get_prompt_str(prompt_type1, prompt_dict1, which=0): if prompt_type1 in ['', None]: print("Got prompt_type %s: %s" % (which, prompt_type1), flush=True) return str({}) prompt_dict1, prompt_dict_error = get_prompt(prompt_type1, prompt_dict1, chat=False, context='', reduced=False, making_context=False, return_dict=True) if prompt_dict_error: return str(prompt_dict_error) else: # return so user can manipulate if want and use as custom return str(prompt_dict1) get_prompt_str_func1 = functools.partial(get_prompt_str, which=1) get_prompt_str_func2 = functools.partial(get_prompt_str, which=2) prompt_type.change(fn=get_prompt_str_func1, inputs=[prompt_type, prompt_dict], outputs=prompt_dict, queue=False) prompt_type2.change(fn=get_prompt_str_func2, inputs=[prompt_type2, prompt_dict2], outputs=prompt_dict2, queue=False) def dropdown_prompt_type_list(x): return gr.Dropdown.update(value=x) def chatbot_list(x, model_used_in): return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]') load_model_args = dict(fn=load_model, inputs=[model_choice, lora_choice, server_choice, model_state, prompt_type, model_load8bit_checkbox, model_use_gpu_id_checkbox, model_gpu], outputs=[model_state, model_used, lora_used, server_used, # if prompt_type changes, prompt_dict will change via change rule prompt_type, max_new_tokens, min_new_tokens, ]) prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type) chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output) nochat_update_args = dict(fn=chatbot_list, inputs=[text_output_nochat, model_used], outputs=text_output_nochat) load_model_event = load_model_button.click(**load_model_args, api_name='load_model' if allow_api and is_public else None) \ .then(**prompt_update_args) \ .then(**chatbot_update_args) \ .then(**nochat_update_args) \ .then(clear_torch_cache) load_model_args2 = dict(fn=load_model, inputs=[model_choice2, lora_choice2, server_choice2, model_state2, prompt_type2, model_load8bit_checkbox2, model_use_gpu_id_checkbox2, model_gpu2], outputs=[model_state2, model_used2, lora_used2, server_used2, # if prompt_type2 changes, prompt_dict2 will change via change rule prompt_type2, max_new_tokens2, min_new_tokens2 ]) prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2) chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2) load_model_event2 = load_model_button2.click(**load_model_args2, api_name='load_model2' if allow_api and is_public else None) \ .then(**prompt_update_args2) \ .then(**chatbot_update_args2) \ .then(clear_torch_cache) def dropdown_model_lora_server_list(model_list0, model_x, lora_list0, lora_x, server_list0, server_x, model_used1, lora_used1, server_used1, model_used2, lora_used2, server_used2, ): model_new_state = [model_list0[0] + [model_x]] model_new_options = [*model_new_state[0]] x1 = model_x if model_used1 == no_model_str else model_used1 x2 = model_x if model_used2 == no_model_str else model_used2 ret1 = [gr.Dropdown.update(value=x1, choices=model_new_options), gr.Dropdown.update(value=x2, choices=model_new_options), '', model_new_state] lora_new_state = [lora_list0[0] + [lora_x]] lora_new_options = [*lora_new_state[0]] # don't switch drop-down to added lora if already have model loaded x1 = lora_x if model_used1 == no_model_str else lora_used1 x2 = lora_x if model_used2 == no_model_str else lora_used2 ret2 = [gr.Dropdown.update(value=x1, choices=lora_new_options), gr.Dropdown.update(value=x2, choices=lora_new_options), '', lora_new_state] server_new_state = [server_list0[0] + [server_x]] server_new_options = [*server_new_state[0]] # don't switch drop-down to added server if already have model loaded x1 = server_x if model_used1 == no_model_str else server_used1 x2 = server_x if model_used2 == no_model_str else server_used2 ret3 = [gr.Dropdown.update(value=x1, choices=server_new_options), gr.Dropdown.update(value=x2, choices=server_new_options), '', server_new_state] return tuple(ret1 + ret2 + ret3) add_model_lora_server_event = \ add_model_lora_server_button.click(fn=dropdown_model_lora_server_list, inputs=[model_options_state, new_model] + [lora_options_state, new_lora] + [server_options_state, new_server] + [model_used, lora_used, server_used] + [model_used2, lora_used2, server_used2], outputs=[model_choice, model_choice2, new_model, model_options_state] + [lora_choice, lora_choice2, new_lora, lora_options_state] + [server_choice, server_choice2, new_server, server_options_state], queue=False) go_event = go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None, queue=False) \ .then(lambda: gr.update(visible=True), None, normal_block, queue=False) \ .then(**load_model_args, queue=False).then(**prompt_update_args, queue=False) def compare_textbox_fun(x): return gr.Textbox.update(visible=x) def compare_column_fun(x): return gr.Column.update(visible=x) def compare_prompt_fun(x): return gr.Dropdown.update(visible=x) def slider_fun(x): return gr.Slider.update(visible=x) compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, api_name="compare_checkbox" if allow_api else None) \ .then(compare_column_fun, compare_checkbox, col_model2) \ .then(compare_prompt_fun, compare_checkbox, prompt_type2) \ .then(compare_textbox_fun, compare_checkbox, score_text2) \ .then(slider_fun, compare_checkbox, max_new_tokens2) \ .then(slider_fun, compare_checkbox, min_new_tokens2) # FIXME: add score_res2 in condition, but do better # callback for logging flagged input/output callback.setup(inputs_list + [text_output, text_output2] + text_outputs, "flagged_data_points") flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output, text_output2] + text_outputs, None, preprocess=False, api_name='flag' if allow_api else None, queue=False) flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output_nochat], None, preprocess=False, api_name='flag_nochat' if allow_api else None, queue=False) def get_system_info(): if is_public: time.sleep(10) # delay to avoid spam since queue=False return gr.Textbox.update(value=system_info_print()) system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info' if allow_api else None, queue=False) def get_system_info_dict(system_input1, **kwargs1): if system_input1 != os.getenv("ADMIN_PASS", ""): return json.dumps({}) exclude_list = ['admin_pass', 'examples'] sys_dict = {k: v for k, v in kwargs1.items() if isinstance(v, (str, int, bool, float)) and k not in exclude_list} try: sys_dict.update(system_info()) except Exception as e: # protection print("Exception: %s" % str(e), flush=True) return json.dumps(sys_dict) system_kwargs = all_kwargs.copy() system_kwargs.update(dict(command=str(' '.join(sys.argv)))) get_system_info_dict_func = functools.partial(get_system_info_dict, **all_kwargs) system_dict_event = system_btn2.click(get_system_info_dict_func, inputs=system_input, outputs=system_text2, api_name='system_info_dict' if allow_api else None, queue=False, # queue to avoid spam ) def get_hash(): return kwargs['git_hash'] system_event = system_btn3.click(get_hash, outputs=system_text3, api_name='system_hash' if allow_api else None, queue=False, ) def count_chat_tokens(model_state1, chat1, prompt_type1, prompt_dict1, memory_restriction_level1=0, keep_sources_in_context1=False, ): if model_state1 and not isinstance(model_state1['tokenizer'], str): tokenizer = model_state1['tokenizer'] elif model_state0 and not isinstance(model_state0['tokenizer'], str): tokenizer = model_state0['tokenizer'] else: tokenizer = None if tokenizer is not None: langchain_mode1 = 'LLM' add_chat_history_to_context1 = True # fake user message to mimic bot() chat1 = copy.deepcopy(chat1) chat1 = chat1 + [['user_message1', None]] model_max_length1 = tokenizer.model_max_length context1 = history_to_context(chat1, langchain_mode1, add_chat_history_to_context1, prompt_type1, prompt_dict1, chat1, model_max_length1, memory_restriction_level1, keep_sources_in_context1) return str(tokenizer(context1, return_tensors="pt")['input_ids'].shape[1]) else: return "N/A" count_chat_tokens_func = functools.partial(count_chat_tokens, memory_restriction_level1=memory_restriction_level, keep_sources_in_context1=kwargs['keep_sources_in_context']) count_tokens_event = count_chat_tokens_btn.click(fn=count_chat_tokens, inputs=[model_state, text_output, prompt_type, prompt_dict], outputs=chat_token_count, api_name='count_tokens' if allow_api else None) # don't pass text_output, don't want to clear output, just stop it # cancel only stops outer generation, not inner generation or non-generation stop_btn.click(lambda: None, None, None, cancels=submits1 + submits2 + submits3 + submits4 + [submit_event_nochat, submit_event_nochat2] + [eventdb1, eventdb2, eventdb3] + [eventdb7, eventdb8, eventdb9, eventdb12] + db_events + [clear_event] + [submit_event_nochat_api, submit_event_nochat] + [load_model_event, load_model_event2] + [count_tokens_event] , queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache, queue=False) demo.load(None, None, None, _js=get_dark_js() if kwargs['dark'] else None) demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open']) favicon_path = "h2o-logo.svg" if not os.path.isfile(favicon_path): print("favicon_path=%s not found" % favicon_path, flush=True) favicon_path = None scheduler = BackgroundScheduler() scheduler.add_job(func=clear_torch_cache, trigger="interval", seconds=20) if is_public and \ kwargs['base_model'] not in non_hf_types: # FIXME: disable for gptj, langchain or gpt4all modify print itself # FIXME: and any multi-threaded/async print will enter model output! scheduler.add_job(func=ping, trigger="interval", seconds=60) if is_public or os.getenv('PING_GPU'): scheduler.add_job(func=ping_gpu, trigger="interval", seconds=60 * 10) scheduler.start() # import control if kwargs['langchain_mode'] == 'Disabled' and \ os.environ.get("TEST_LANGCHAIN_IMPORT") and \ kwargs['base_model'] not in non_hf_types: assert 'gpt_langchain' not in sys.modules, "Dev bug, import of langchain when should not have" assert 'langchain' not in sys.modules, "Dev bug, import of langchain when should not have" demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True, favicon_path=favicon_path, prevent_thread_lock=True, auth=kwargs['auth']) if kwargs['verbose']: print("Started GUI", flush=True) if kwargs['block_gradio_exit']: demo.block_thread() def get_inputs_list(inputs_dict, model_lower, model_id=1): """ map gradio objects in locals() to inputs for evaluate(). :param inputs_dict: :param model_lower: :param model_id: Which model (1 or 2) of 2 :return: """ inputs_list_names = list(inspect.signature(evaluate).parameters) inputs_list = [] inputs_dict_out = {} for k in inputs_list_names: if k == 'kwargs': continue if k in input_args_list + inputs_kwargs_list: # these are added at use time for args or partial for kwargs, not taken as input continue if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']: continue if model_id == 2: if k == 'prompt_type': k = 'prompt_type2' if k == 'prompt_used': k = 'prompt_used2' if k == 'max_new_tokens': k = 'max_new_tokens2' if k == 'min_new_tokens': k = 'min_new_tokens2' inputs_list.append(inputs_dict[k]) inputs_dict_out[k] = inputs_dict[k] return inputs_list, inputs_dict_out def get_sources(db1s, langchain_mode, dbs=None, docs_state0=None): for k in db1s: set_userid(db1s[k]) if langchain_mode in ['ChatLLM', 'LLM']: source_files_added = "NA" source_list = [] elif langchain_mode in ['wiki_full']: source_files_added = "Not showing wiki_full, takes about 20 seconds and makes 4MB file." \ " Ask jon.mckinney@h2o.ai for file if required." source_list = [] elif langchain_mode in db1s and len(db1s[langchain_mode]) == 2 and db1s[langchain_mode][0] is not None: db1 = db1s[langchain_mode] from gpt_langchain import get_metadatas metadatas = get_metadatas(db1[0]) source_list = sorted(set([x['source'] for x in metadatas])) source_files_added = '\n'.join(source_list) elif langchain_mode in dbs and dbs[langchain_mode] is not None: from gpt_langchain import get_metadatas db1 = dbs[langchain_mode] metadatas = get_metadatas(db1) source_list = sorted(set([x['source'] for x in metadatas])) source_files_added = '\n'.join(source_list) else: source_list = [] source_files_added = "None" sources_dir = "sources_dir" makedirs(sources_dir) sources_file = os.path.join(sources_dir, 'sources_%s_%s' % (langchain_mode, str(uuid.uuid4()))) with open(sources_file, "wt") as f: f.write(source_files_added) source_list = docs_state0 + source_list return sources_file, source_list def set_userid(db1): # can only call this after function called so for specific userr, not in gr.State() that occurs during app init assert db1 is not None and len(db1) == 2 if db1[1] is None: # uuid in db is used as user ID db1[1] = str(uuid.uuid4()) def update_user_db(file, db1s, selection_docs_state1, chunk, chunk_size, langchain_mode, dbs=None, **kwargs): kwargs.update(selection_docs_state1) if file is None: raise RuntimeError("Don't use change, use input") try: return _update_user_db(file, db1s=db1s, chunk=chunk, chunk_size=chunk_size, langchain_mode=langchain_mode, dbs=dbs, **kwargs) except BaseException as e: print(traceback.format_exc(), flush=True) # gradio has issues if except, so fail semi-gracefully, else would hang forever in processing textbox ex_str = "Exception: %s" % str(e) source_files_added = """\

Sources:

{0}
""".format(ex_str) doc_exception_text = str(e) return None, langchain_mode, source_files_added, doc_exception_text finally: clear_torch_cache() def get_lock_file(db1, langchain_mode): set_userid(db1) assert len(db1) == 2 and db1[1] is not None and isinstance(db1[1], str) user_id = db1[1] base_path = 'locks' makedirs(base_path) lock_file = os.path.join(base_path, "db_%s_%s.lock" % (langchain_mode.replace(' ', '_'), user_id)) return lock_file def _update_user_db(file, db1s=None, chunk=None, chunk_size=None, dbs=None, db_type=None, langchain_mode='UserData', langchain_modes=None, # unused but required as part of selection_docs_state1 langchain_mode_paths=None, visible_langchain_modes=None, use_openai_embedding=None, hf_embedding_model=None, caption_loader=None, enable_captions=None, captions_model=None, enable_ocr=None, enable_pdf_ocr=None, verbose=None, n_jobs=-1, is_url=None, is_txt=None, ): assert db1s is not None assert chunk is not None assert chunk_size is not None assert use_openai_embedding is not None assert hf_embedding_model is not None assert caption_loader is not None assert enable_captions is not None assert captions_model is not None assert enable_ocr is not None assert enable_pdf_ocr is not None assert verbose is not None if dbs is None: dbs = {} assert isinstance(dbs, dict), "Wrong type for dbs: %s" % str(type(dbs)) # assert db_type in ['faiss', 'chroma'], "db_type %s not supported" % db_type from gpt_langchain import add_to_db, get_db, path_to_docs # handle case of list of temp buffer if isinstance(file, list) and len(file) > 0 and hasattr(file[0], 'name'): file = [x.name for x in file] # handle single file of temp buffer if hasattr(file, 'name'): file = file.name if not isinstance(file, (list, tuple, typing.Generator)) and isinstance(file, str): file = [file] if langchain_mode == LangChainMode.DISABLED.value: return None, langchain_mode, get_source_files(), "" if langchain_mode in [LangChainMode.LLM.value]: # then switch to MyData, so langchain_mode also becomes way to select where upload goes # but default to mydata if nothing chosen, since safest if LangChainMode.MY_DATA.value in visible_langchain_modes: langchain_mode = LangChainMode.MY_DATA.value if langchain_mode_paths is None: langchain_mode_paths = {} user_path = langchain_mode_paths.get(langchain_mode) # UserData or custom, which has to be from user's disk if user_path is not None: # move temp files from gradio upload to stable location for fili, fil in enumerate(file): if isinstance(fil, str) and os.path.isfile(fil): # not url, text new_fil = os.path.normpath(os.path.join(user_path, os.path.basename(fil))) if os.path.normpath(os.path.abspath(fil)) != os.path.normpath(os.path.abspath(new_fil)): if os.path.isfile(new_fil): remove(new_fil) try: shutil.move(fil, new_fil) except FileExistsError: pass file[fili] = new_fil if verbose: print("Adding %s" % file, flush=True) sources = path_to_docs(file if not is_url and not is_txt else None, verbose=verbose, n_jobs=n_jobs, chunk=chunk, chunk_size=chunk_size, url=file if is_url else None, text=file if is_txt else None, enable_captions=enable_captions, captions_model=captions_model, enable_ocr=enable_ocr, enable_pdf_ocr=enable_pdf_ocr, caption_loader=caption_loader, ) exceptions = [x for x in sources if x.metadata.get('exception')] exceptions_strs = [x.metadata['exception'] for x in exceptions] sources = [x for x in sources if 'exception' not in x.metadata] # below must at least come after langchain_mode is modified in case was LLM -> MyData, # so original langchain mode changed for k in db1s: set_userid(db1s[k]) db1 = get_db1(db1s, langchain_mode) lock_file = get_lock_file(db1s[LangChainMode.MY_DATA.value], langchain_mode) # user-level lock, not db-level lock with filelock.FileLock(lock_file): if langchain_mode in db1s: if db1[0] is not None: # then add db, num_new_sources, new_sources_metadata = add_to_db(db1[0], sources, db_type=db_type, use_openai_embedding=use_openai_embedding, hf_embedding_model=hf_embedding_model) else: # in testing expect: # assert len(db1) == 2 and db1[1] is None, "Bad MyData db: %s" % db1 # for production hit, when user gets clicky: assert len(db1) == 2, "Bad %s db: %s" % (langchain_mode, db1) assert db1[1] is not None, "db hash was None, not allowed" # then create # if added has to original state and didn't change, then would be shared db for all users persist_directory = os.path.join(scratch_base_dir, 'db_dir_%s_%s' % (langchain_mode, db1[1])) db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type, persist_directory=persist_directory, langchain_mode=langchain_mode, hf_embedding_model=hf_embedding_model) if db is not None: db1[0] = db source_files_added = get_source_files(db=db1[0], exceptions=exceptions) return None, langchain_mode, source_files_added, '\n'.join(exceptions_strs) else: from gpt_langchain import get_persist_directory persist_directory = get_persist_directory(langchain_mode) if langchain_mode in dbs and dbs[langchain_mode] is not None: # then add db, num_new_sources, new_sources_metadata = add_to_db(dbs[langchain_mode], sources, db_type=db_type, use_openai_embedding=use_openai_embedding, hf_embedding_model=hf_embedding_model) else: # then create. Or might just be that dbs is unfilled, then it will fill, then add db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type, persist_directory=persist_directory, langchain_mode=langchain_mode, hf_embedding_model=hf_embedding_model) dbs[langchain_mode] = db # NOTE we do not return db, because function call always same code path # return dbs[langchain_mode] # db in this code path is updated in place source_files_added = get_source_files(db=dbs[langchain_mode], exceptions=exceptions) return None, langchain_mode, source_files_added, '\n'.join(exceptions_strs) def get_db(db1s, langchain_mode, dbs=None): db1 = get_db1(db1s, langchain_mode) lock_file = get_lock_file(db1s[LangChainMode.MY_DATA.value], langchain_mode) with filelock.FileLock(lock_file): if langchain_mode in ['wiki_full']: # NOTE: avoid showing full wiki. Takes about 30 seconds over about 90k entries, but not useful for now db = None elif langchain_mode in db1s and len(db1) == 2 and db1[0] is not None: db = db1[0] elif dbs is not None and langchain_mode in dbs and dbs[langchain_mode] is not None: db = dbs[langchain_mode] else: db = None return db def get_source_files_given_langchain_mode(db1s, langchain_mode='UserData', dbs=None): db = get_db(db1s, langchain_mode, dbs=dbs) if langchain_mode in ['ChatLLM', 'LLM'] or db is None: return "Sources: N/A" return get_source_files(db=db, exceptions=None) def get_source_files(db=None, exceptions=None, metadatas=None): if exceptions is None: exceptions = [] # only should be one source, not confused # assert db is not None or metadatas is not None # clicky user if db is None and metadatas is None: return "No Sources at all" if metadatas is None: source_label = "Sources:" if db is not None: from gpt_langchain import get_metadatas metadatas = get_metadatas(db) else: metadatas = [] adding_new = False else: source_label = "New Sources:" adding_new = True # below automatically de-dups from gpt_langchain import get_url small_dict = {get_url(x['source'], from_str=True, short_name=True): get_short_name(x.get('head')) for x in metadatas} # if small_dict is empty dict, that's ok df = pd.DataFrame(small_dict.items(), columns=['source', 'head']) df.index = df.index + 1 df.index.name = 'index' source_files_added = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml') if exceptions: exception_metadatas = [x.metadata for x in exceptions] small_dict = {get_url(x['source'], from_str=True, short_name=True): get_short_name(x.get('exception')) for x in exception_metadatas} # if small_dict is empty dict, that's ok df = pd.DataFrame(small_dict.items(), columns=['source', 'exception']) df.index = df.index + 1 df.index.name = 'index' exceptions_html = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml') else: exceptions_html = '' if metadatas and exceptions: source_files_added = """\

{0}

{1} {2}
""".format(source_label, source_files_added, exceptions_html) elif metadatas: source_files_added = """\

{0}

{1}
""".format(source_label, source_files_added) elif exceptions_html: source_files_added = """\

Exceptions:

{0}
""".format(exceptions_html) else: if adding_new: source_files_added = "No New Sources" else: source_files_added = "No Sources" return source_files_added def update_and_get_source_files_given_langchain_mode(db1s, langchain_mode, chunk, chunk_size, dbs=None, first_para=None, text_limit=None, langchain_mode_paths=None, db_type=None, load_db_if_exists=None, n_jobs=None, verbose=None): has_path = {k: v for k, v in langchain_mode_paths.items() if v} if langchain_mode in [LangChainMode.LLM.value, LangChainMode.MY_DATA.value]: # then assume user really meant UserData, to avoid extra clicks in UI, # since others can't be on disk, except custom user modes, which they should then select to query it if LangChainMode.USER_DATA.value in has_path: langchain_mode = LangChainMode.USER_DATA.value db = get_db(db1s, langchain_mode, dbs=dbs) from gpt_langchain import make_db db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=False, hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", first_para=first_para, text_limit=text_limit, chunk=chunk, chunk_size=chunk_size, langchain_mode=langchain_mode, langchain_mode_paths=langchain_mode_paths, db_type=db_type, load_db_if_exists=load_db_if_exists, db=db, n_jobs=n_jobs, verbose=verbose) # during refreshing, might have "created" new db since not in dbs[] yet, so insert back just in case # so even if persisted, not kept up-to-date with dbs memory if langchain_mode in db1s: db1s[langchain_mode][0] = db else: dbs[langchain_mode] = db # return only new sources with text saying such return get_source_files(db=None, exceptions=None, metadatas=new_sources_metadata) def get_db1(db1s, langchain_mode1): if langchain_mode1 in db1s: db1 = db1s[langchain_mode1] else: # indicates to code that not scratch database db1 = [None, None] return db1