Spaces:
Sleeping
Sleeping
File size: 18,228 Bytes
be27086 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
#####################################################
# AST Composite Server Double Two
# By Guillaume Descoteaux-Isabelle, 20021
#
# This server compose two Adaptive Style Transfer model (output of the first pass serve as input to the second using the same model)
########################################################
#v1-dev
#Receive the 2 res from arguments in the request...
import os
import numpy as np
import tensorflow as tf
import cv2
from module import encoder, decoder
from glob import glob
import runway
from runway.data_types import number, text
#from utils import *
import scipy
from datetime import datetime
import time
import re
SRV_TYPE="s1"
#set env var RW_ if not already set
if not os.getenv('RW_PORT'):
os.environ["RW_PORT"] = "7860"
if not os.getenv('RW_DEBUG'):
os.environ["RW_DEBUG"] = "0"
if not os.getenv('RW_HOST'):
os.environ["RW_HOST"] = "0.0.0.0"
#RW_MODEL_OPTIONS
if not os.getenv('RW_MODEL_OPTIONS'):
os.environ["RW_MODEL_OPTIONS"]='{"styleCheckpoint":"/data/styleCheckpoint"}'
# Determining the size of the passes
pass1_image_size = 1328
if not os.getenv('PASS1IMAGESIZE'):
print("PASS1IMAGESIZE env var non existent;using default:" + str(pass1_image_size))
else:
pass1_image_size = os.getenv('PASS1IMAGESIZE', 1328)
print("PASS1IMAGESIZE value:" + str(pass1_image_size))
# Determining the size of the passes
autoabc = 1
if not os.getenv('AUTOABC'):
print("AUTOABC env var non existent;using default:")
print(autoabc)
abcdefault = 1
print("NOTE----> when running docker, set AUTOABC variable")
print(" docker run ... -e AUTOABC=1 #enabled, 0 to disabled (default)")
else:
autoabc = os.getenv('AUTOABC',1)
print("AUTOABC value:")
print(autoabc)
abcdefault = autoabc
#pass2_image_size = 1024
#if not os.getenv('PASS2IMAGESIZE'):
# print("PASS2IMAGESIZE env var non existent;using default:" + pass2_image_size)
#else:
# pass2_image_size = os.getenv('PASS2IMAGESIZE')
# print("PASS2IMAGESIZE value:" + pass2_image_size)
# pass3_image_size = 2048
# if not os.getenv('PASS3IMAGESIZE'):
# print("PASS3IMAGESIZE env var non existent;using default:" + pass3_image_size)
# else:
# pass3_image_size = os.getenv('PASS3IMAGESIZE')
# print("PASS3IMAGESIZE value:" + pass3_image_size)
##########################################
## MODELS
#model name for sending it in the response
model1name = "UNNAMED"
if not os.getenv('MODEL1NAME'):
print("MODEL1NAME env var non existent;using default:" + model1name)
else:
model1name = os.getenv('MODEL1NAME', "UNNAMED")
print("MODEL1NAME value:" + model1name)
# #m2
# model2name = "UNNAMED"
# if not os.getenv('MODEL2NAME'): print("MODEL2NAME env var non existent;using default:" + model2name)
# else:
# model2name = os.getenv('MODEL2NAME')
# print("MODEL2NAME value:" + model2name)
# #m3
# model3name = "UNNAMED"
# if not os.getenv('MODEL3NAME'): print("MODEL3NAME env var non existent;using default:" + model3name)
# else:
# model3name = os.getenv('MODEL3NAME')
# print("MODEL3NAME value:" + model3name)
#######################################################
def get_model_simplified_name_from_dirname(dirname):
result_simple_name = dirname.replace("model_","").replace("_864x","").replace("_864","").replace("_new","").replace("-864","")
print(" result_simple_name:" + result_simple_name)
return result_simple_name
def get_padded_checkpoint_no_from_filename(checkpoint_filename):
match = re.search(r'ckpt-(\d+)', checkpoint_filename)
if match:
number = int(match.group(1))
checkpoint_number = round(number/1000,0)
print(checkpoint_number)
padded_checkpoint_number = str(str(checkpoint_number).zfill(3))
return padded_checkpoint_number.replace('.0','')
found_model='none'
found_model_checkpoint='0'
#########################################################
# SETUP
runway_files = runway.file(is_directory=True)
@runway.setup(options={'styleCheckpoint': runway_files})
def setup(opts):
global found_model,found_model_checkpoint
sess = tf.Session()
# sess2 = tf.Session()
# sess3 = tf.Session()
init_op = tf.global_variables_initializer()
# init_op2 = tf.global_variables_initializer()
# init_op3 = tf.global_variables_initializer()
sess.run(init_op)
# sess2.run(init_op2)
# sess3.run(init_op3)
with tf.name_scope('placeholder'):
input_photo = tf.placeholder(dtype=tf.float32,
shape=[1, None, None, 3],
name='photo')
input_photo_features = encoder(image=input_photo,
options={'gf_dim': 32},
reuse=False)
output_photo = decoder(features=input_photo_features,
options={'gf_dim': 32},
reuse=False)
saver = tf.train.Saver()
# saver2 = tf.train.Saver()
# saver3 = tf.train.Saver()
print("-------------====PATH---------------------->>>>--")
path_default = '/data/styleCheckpoint'
print("opts:")
print(opts)
print("----------------------------------------")
if opts is None:
print("ERROR:opts is None")
path = path_default
try:
path = opts['styleCheckpoint']
except:
opts= {'styleCheckpoint': u'/data/styleCheckpoint'}
path = opts['styleCheckpoint']
if not os.path.exists(path):
print("ERROR:Path does not exist:" + path)
path = path_default
print(path)
print("----------------PATH=======---------------<<<<--")
#Getting the model name
model_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][0]
if not os.getenv('MODELNAME'):
dtprint("CONFIG::MODELNAME env var non existent;using default:" + model_name)
else:
model_name = os.getenv('MODELNAME')
# #Getting the model2 name
# model2_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][1]
# if not os.getenv('MODEL2NAME'):
# dtprint("CONFIG::MODEL2NAME env var non existent;using default:" + model2_name)
# else:
# model2_name = os.getenv('MODEL2NAME')
##Getting the model3 name
# model3_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][2]
# if not os.getenv('MODEL3NAME'):
# dtprint("CONFIG::MODEL3NAME env var non existent;using default:" + model3_name)
# else:
# model3_name = os.getenv('MODEL3NAME')
checkpoint_dir = os.path.join(path, model_name, 'checkpoint_long')
#checkpoint2_dir = os.path.join(path, model2_name, 'checkpoint_long')
# checkpoint3_dir = os.path.join(path, model3_name, 'checkpoint_long')
print("-----------------------------------------")
print("modelname is : " + model_name)
found_model=get_model_simplified_name_from_dirname(model_name)
#print("model2name is : " + model2_name)
# print("model3name is : " + model3_name)
print("checkpoint_dir is : " + checkpoint_dir)
#print("checkpoint2_dir is : " + checkpoint2_dir)
# print("checkpoint3_dir is : " + checkpoint3_dir)
print("-----------------------------------------")
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
#ckpt2 = tf.train.get_checkpoint_state(checkpoint2_dir)
# ckpt3 = tf.train.get_checkpoint_state(checkpoint3_dir)
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
found_model_checkpoint= get_padded_checkpoint_no_from_filename(ckpt_name)
#ckpt2_name = os.path.basename(ckpt2.model_checkpoint_path)
# ckpt3_name = os.path.basename(ckpt3.model_checkpoint_path)
saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
#saver2.restore(sess2, os.path.join(checkpoint2_dir, ckpt2_name))
# saver3.restore(sess3, os.path.join(checkpoint3_dir, ckpt3_name))
m1 = dict(sess=sess, input_photo=input_photo, output_photo=output_photo)
#m2 = dict(sess=sess2, input_photo=input_photo, output_photo=output_photo)
# m3 = dict(sess=sess3, input_photo=input_photo, output_photo=output_photo)
models = type('', (), {})()
models.m1 = m1
#models.m2 = m2
# models.m3 = m3
return models
def make_target_output_filename( mname,checkpoint, fn='',res1=0,abc=0, ext='.jpg',svrtype="s1", modelid='', suffix='', xtra_model_id='',verbose=False):
fn_base=fn.replace(ext,"")
fn_base=fn_base.replace(".jpg","")
fn_base=fn_base.replace(".jpeg","")
fn_base=fn_base.replace(".JPG","")
fn_base=fn_base.replace(".JPEG","")
fn_base=fn_base.replace(".png","")
fn_base=fn_base.replace(".PNG","")
#pad res1 and res2 to 4 digits
res1_pad=str(res1).zfill(4)
abc_pad=str(abc).zfill(2)
if res1_pad=="0000":
res1_pad=""
#pad checkpoint to 3 digits
checkpoint=checkpoint.zfill(3)
if fn_base=="none":
fn_base=""
if '/' in fn_base:
fn_base=fn_base.split('/')[-1]
# Print out all input info:
if verbose :
print("-----------------------------")
print("fn_base: ",fn_base)
print("mname: ",mname)
print("suffix: ",suffix)
print("res1: ",res1_pad)
print("abc: ",abc_pad)
print("ext: ",ext)
print("svrtype: ",svrtype)
print("modelid: ",modelid)
print("xtra_model_id: ",xtra_model_id)
print("checkpoint: ",checkpoint)
print("fn: ",fn)
mtag = "{}__{}__{}x{}__{}__{}k".format(mname,suffix,res1_pad,abc_pad, svrtype, checkpoint).replace("_0x" + str(abc_pad), "")
if verbose:
print(mtag)
target_output = "{}__{}__{}{}{}".format(fn_base, modelid, mtag, xtra_model_id, ext).replace("_"+str(abc_pad)+"x"+str(abc_pad)+"_","").replace("_0x0_", "").replace("_0_", "").replace("_-", "_").replace("____", "__").replace("___", "__").replace("___", "__").replace("..",".").replace("model_","").replace("_x"+str(abc_pad)+"_","").replace("gia-ds-","")
target_output = replace_values_from_csv(target_output)
return target_output
def replace_values_from_csv(target_output):
# Implement the logic to replace values from CSV
#load replacer.csv and replace the values (src,dst)
src_dest_file = 'replacer.csv'
if os.path.exists(src_dest_file):
with open(src_dest_file, 'r') as file:
lines = file.readlines()
for line in lines:
src, dst = line.split(',')
target_output = target_output.replace(src, dst)
return target_output.replace("\n", "").replace("\r", "").replace(" ", "_")
def _make_meta_as_json(x1=0,c1=0,inp=None,result_dict=None):
global found_model,found_model_checkpoint
fn='none'
if inp['fn'] != 'none':
fn=inp['fn']
ext='.jpg'
if inp['ext'] != '.jpg':
ext=inp['ext']
filename=make_target_output_filename(found_model,found_model_checkpoint,fn,x1,c1,ext,SRV_TYPE)
if result_dict is None:
json_return = {
"model": str(found_model),
"checkpoint": str(found_model_checkpoint),
"filename": str(filename)
}
return json_return
else: #support adding to the existing dict the data directly
result_dict['model']=str(found_model)
result_dict['checkpoint']=str(found_model_checkpoint)
result_dict['filename']=str(filename)
return result_dict
meta_inputs={'meta':text}
meta_outputs={'model':text,'filename':text,'checkpoint':text}
@runway.command('meta2', inputs=meta_inputs, outputs=meta_outputs)
def get_geta(models, inp):
global found_model,found_model_checkpoint
json_return = _make_meta_as_json()
# "files": "nothing yet"
print(json_return)
return json_return
@runway.command('meta', inputs=meta_inputs, outputs=meta_outputs)
def get_geta(models, inp):
global found_model,found_model_checkpoint
json_return = _make_meta_as_json(inp)
# "files": "nothing yet"
print(json_return)
return json_return
#@STCGoal add number or text to specify resolution of the three pass
inputs={'contentImage': runway.image,'x1':number(default=1024,min=24,max=18000),'c1':number(default=0,min=-99,max=99),'fn':text(default='none'),'ext':text(default='.jpg')}
outputs={'stylizedImage': runway.image,'totaltime':number,'x1': number,'c1':number,'model1name':text,'checkpoint':text,'filename':text,'model':text}
@runway.command('stylize', inputs=inputs, outputs=outputs)
def stylize(models, inp):
global found_model,found_model_checkpoint,model1name
start = time.time()
model = models.m1
#model2 = models.m2
# model3 = models.m3
#Getting our names back (even though I think we dont need)
#@STCIssue BUGGED
# m1name=models.m1.name
# m2name=models.m2.name
# m3name=models.m3.name
#get size from inputs rather than env
x1 = int(inp['x1'])
c1 = int(inp['c1'])
#
img = inp['contentImage']
img = np.array(img)
img = img / 127.5 - 1.
#@a Pass 1 RESIZE to 1368px the smaller side
image_size=pass1_image_size
image_size=x1
img_shape = img.shape[:2]
alpha = float(image_size) / float(min(img_shape))
#dtprint ("DEBUG::content.imgshape:" + str(tuple(img_shape)) + ", alpha:" + str(alpha))
try:
img = scipy.misc.imresize(img, size=alpha)
except:
pass
img = np.expand_dims(img, axis=0)
#@a INFERENCE PASS 1
dtprint("INFO:Pass1 inference starting")
img = model['sess'].run(model['output_photo'], feed_dict={model['input_photo']: img})
#
img = (img + 1.) * 127.5
img = img.astype('uint8')
img = img[0]
#dtprint("INFO:Upresing Pass1 for Pass 2 (STARTING) ")
#@a Pass 2 RESIZE to 1024px the smaller side
#image_size=pass2_image_size
#image_size=x2
#img_shape = img.shape[:2]
#alpha = float(image_size) / float(min(img_shape))
#dtprint ("DEBUG::pass1.imgshape:" + str(tuple(img_shape)) + ", alpha:" + str(alpha))
#img = scipy.misc.imresize(img, size=alpha)
#dtprint("INFO:Upresing Pass1 (DONE) ")
#Iteration 2
#img = np.array(img)
#img = img / 127.5 - 1.
#img = np.expand_dims(img, axis=0)
#@a INFERENCE PASS 2 using the same model
#dtprint("INFO:Pass2 inference (STARTING)")
#img = model['sess'].run(model['output_photo'], feed_dict={model['input_photo']: img})
#dtprint("INFO:Pass2 inference (DONE)")
#img = (img + 1.) * 127.5
#img = img.astype('uint8')
#img = img[0]
# #pass3
# #@a Pass 3 RESIZE to 2048px the smaller side
# image_size=pass3_image_size
# image_size=x3
# img_shape = img.shape[:2]
# alpha = float(image_size) / float(min(img_shape))
# dtprint ("DEBUG::pass2.imgshape:" + str(tuple(img_shape)) + ", alpha:" + str(alpha))
# img = scipy.misc.imresize(img, size=alpha)
# dtprint("INFO:Upresing Pass2 (DONE) ")
# #Iteration 3
# img = np.array(img)
# img = img / 127.5 - 1.
# img = np.expand_dims(img, axis=0)
# #@a INFERENCE PASS 3
# dtprint("INFO:Pass3 inference (STARTING)")
# img = model3['sess'].run(model3['output_photo'], feed_dict={model3['input_photo']: img})
# dtprint("INFO:Pass3 inference (DONE)")
# img = (img + 1.) * 127.5
# img = img.astype('uint8')
# img = img[0]
# #pass3
#dtprint("INFO:Composing done")
if c1 != 0 :
print('Auto Brightening images...' + str(c1))
img = img, alpha2, beta = automatic_brightness_and_contrast(img,c1)
stop = time.time()
totaltime = stop - start
print("The time of the run:", totaltime)
#if model1name UNNAMED, use found_model
if model1name == "UNNAMED":
model1name=found_model
include_meta_directly_in_result=True
if include_meta_directly_in_result:
result_dict = dict(stylizedImage=img,totaltime=totaltime,x1=x1,model1name=model1name,c1=c1)
result_dict = _make_meta_as_json(x1,c1,inp,result_dict)
else:
meta_data = _make_meta_as_json(x1,c1,inp)
result_dict = dict(stylizedImage=img,totaltime=totaltime,x1=x1,model1name=model1name,c1=c1,meta=meta_data)
return result_dict
def dtprint(msg):
dttag=getdttag()
print(dttag + "::" + msg )
def getdttag():
# datetime object containing current date and time
now = datetime.now()
# dd/mm/YY H:M:S
# dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
return now.strftime("%H:%M:%S")
# Automatic brightness and contrast optimization with optional histogram clipping
def automatic_brightness_and_contrast(image, clip_hist_percent=25):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Calculate grayscale histogram
hist = cv2.calcHist([gray],[0],None,[256],[0,256])
hist_size = len(hist)
# Calculate cumulative distribution from the histogram
accumulator = []
accumulator.append(float(hist[0]))
for index in range(1, hist_size):
accumulator.append(accumulator[index -1] + float(hist[index]))
# Locate points to clip
maximum = accumulator[-1]
clip_hist_percent *= (maximum/100.0)
clip_hist_percent /= 2.0
# Locate left cut
minimum_gray = 0
while accumulator[minimum_gray] < clip_hist_percent:
minimum_gray += 1
# Locate right cut
maximum_gray = hist_size -1
while accumulator[maximum_gray] >= (maximum - clip_hist_percent):
maximum_gray -= 1
# Calculate alpha and beta values
alpha = 255 / (maximum_gray - minimum_gray)
beta = -minimum_gray * alpha
'''
# Calculate new histogram with desired range and show histogram
new_hist = cv2.calcHist([gray],[0],None,[256],[minimum_gray,maximum_gray])
plt.plot(hist)
plt.plot(new_hist)
plt.xlim([0,256])
plt.show()
'''
auto_result = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
return (auto_result, alpha, beta)
if __name__ == '__main__':
#print('External Service port is:' +os.environ.get('SPORT'))
os.environ["RW_PORT"] = "7860"
print("Launched...")
runway.run()
|