Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,652 Bytes
897f5fa 1bfb10e 897f5fa 1bfb10e cafadf1 1bfb10e 1a8f9ae 6010cc7 1a8f9ae 897f5fa cafadf1 897f5fa 1a8f9ae 897f5fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import spaces
import torch
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
import gradio as gr
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
torch_dtype=torch.bfloat16
)
@spaces.GPU(duration=250)
def generate_video(prompt, image):
# Ensure the generator is on the same device as the model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe.to("cuda")
generator = torch.Generator(device=device).manual_seed(42)
video = pipe(
prompt=prompt,
image=image,
num_videos_per_prompt=1,
num_inference_steps=15,
num_frames=49,
guidance_scale=6,
generator=generator,
).frames[0]
video_path = "output.mp4"
export_to_video(video, video_path, fps=8)
return video_path
# Interface Gradio
with gr.Blocks() as demo:
gr.Markdown("# Image to Video Generation")
with gr.Row():
# Entrada de texto para o prompt
prompt_input = gr.Textbox(label="Prompt", value="A little girl is riding a bicycle at high speed. Focused, detailed, realistic.")
# Upload de imagem
image_input = gr.Image(label="Upload an Image", type="pil")
# Botão para gerar o vídeo
generate_button = gr.Button("Generate Video")
# Saída do vídeo gerado
video_output = gr.Video(label="Generated Video")
# Ação ao clicar no botão
generate_button.click(fn=generate_video, inputs=[prompt_input, image_input], outputs=video_output)
# Rodar a interface
demo.launch()
|