gridflowai commited on
Commit
3ac0ad2
·
1 Parent(s): 1fbd1d9

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +44 -0
  2. ols_model_results.pkl +3 -0
  3. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pickle
3
+
4
+ # Load the KNN model from the pickle file
5
+ with open('ols_model_results.pkl', 'rb') as f:
6
+ lr_model = pickle.load(f)
7
+
8
+ # Define the attributes without the intercept
9
+ attributes = [
10
+ ("CRIM", (0, 100)),
11
+ ("ZN", (0, 100)),
12
+ ("INDUS", (0, 30)),
13
+ ("CHAS", (0, 1)),
14
+ ("NOX", (0, 1)),
15
+ ("RM", (3, 9)),
16
+ ("DIS", (0, 12)),
17
+ ("RAD", (1, 24)),
18
+ ("TAX", (100, 700)),
19
+ ("PTRATIO", (13, 23)),
20
+ ("LSTAT", (2, 38))
21
+ ]
22
+
23
+ # Create a list of Input objects for each attribute
24
+ attribute_inputs = [
25
+ gr.Slider(minimum=min_val, maximum=max_val, label=name, default=min_val)
26
+ for name, (min_val, max_val) in attributes
27
+ ]
28
+
29
+ # Prediction function
30
+ def predict(*args):
31
+ # Always prepend 1.0 to represent the intercept
32
+ input_data = [1.0] + [float(arg) for arg in args]
33
+ predicted_value = lr_model.predict([input_data])[0]
34
+ return f"Predicted value of the house: ${predicted_value * 1000:.2f}"
35
+
36
+ # The rest of the code to display UI remains the same.
37
+
38
+ # Create the interface
39
+ iface = gr.Interface(fn=predict, inputs=attribute_inputs, outputs="text", live=True)
40
+
41
+
42
+ # Launch the interface
43
+
44
+ iface.launch(server_name="0.0.0.0", server_port=7860)
ols_model_results.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:320708a8aec5e3e41f2aebec138e250dd5e7eabc2ddaa1cf711985349cc770c2
3
+ size 158478
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ gradio
2
+ scikit-learn==1.2.2
3
+ numpy
4
+ statsmodels==0.14.0