Spaces:
Running
on
T4
Running
on
T4
Commit
·
2776201
1
Parent(s):
357b7da
add litgpt
Browse files- .gitignore +2 -1
- litgpt/__init__.py +19 -0
- litgpt/config.py +180 -0
- litgpt/generate/__init__.py +0 -0
- litgpt/generate/base.py +795 -0
- litgpt/model.py +618 -0
- litgpt/tokenizer.py +131 -0
- litgpt/utils.py +641 -0
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
checkpoint/
|
|
|
|
1 |
+
checkpoint/
|
2 |
+
__pycache__
|
litgpt/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import re
|
5 |
+
from litgpt.model import GPT # needs to be imported before config
|
6 |
+
from litgpt.config import Config
|
7 |
+
from litgpt.tokenizer import Tokenizer
|
8 |
+
|
9 |
+
# Suppress excessive warnings, see https://github.com/pytorch/pytorch/issues/111632
|
10 |
+
pattern = re.compile(".*Profiler function .* will be ignored")
|
11 |
+
logging.getLogger("torch._dynamo.variables.torch").addFilter(
|
12 |
+
lambda record: not pattern.search(record.getMessage())
|
13 |
+
)
|
14 |
+
|
15 |
+
# Avoid printing state-dict profiling output at the WARNING level when saving a checkpoint
|
16 |
+
logging.getLogger("torch.distributed.fsdp._optim_utils").disabled = True
|
17 |
+
logging.getLogger("torch.distributed.fsdp._debug_utils").disabled = True
|
18 |
+
|
19 |
+
__all__ = ["GPT", "Config", "Tokenizer"]
|
litgpt/config.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
|
2 |
+
|
3 |
+
from copy import deepcopy
|
4 |
+
from dataclasses import dataclass, field
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Any, Literal, Optional, Type, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import yaml
|
10 |
+
from typing_extensions import Self
|
11 |
+
|
12 |
+
import litgpt.model
|
13 |
+
from litgpt.utils import find_multiple
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class Config:
|
18 |
+
name: str = ""
|
19 |
+
hf_config: dict = field(default_factory=dict)
|
20 |
+
scale_embeddings: bool = False
|
21 |
+
block_size: int = 4096
|
22 |
+
vocab_size: int = 50254
|
23 |
+
padding_multiple: int = 512
|
24 |
+
padded_vocab_size: Optional[int] = None
|
25 |
+
n_layer: int = 16
|
26 |
+
n_head: int = 32
|
27 |
+
head_size: Optional[int] = None
|
28 |
+
n_embd: int = 4096
|
29 |
+
rotary_percentage: float = 0.25
|
30 |
+
parallel_residual: bool = True
|
31 |
+
bias: bool = True
|
32 |
+
lm_head_bias: bool = False
|
33 |
+
# to use multi-head attention (MHA), set this to `n_head` (default)
|
34 |
+
# to use multi-query attention (MQA), set this to 1
|
35 |
+
# to use grouped-query attention (GQA), set this to a value in between
|
36 |
+
# Example with `n_head=4`
|
37 |
+
# ┌───┐┌───┐┌───┐┌───┐ ┌───┐ ┌───┐ ┌───┐
|
38 |
+
# │ v ││ v ││ v ││ v │ │ v │ │ v │ │ v │
|
39 |
+
# └───┘└───┘└───┘└───┘ └───┘ └───┘ └───┘
|
40 |
+
# │ │ │ │ │ │ │
|
41 |
+
# ┌───┐┌───┐┌───┐┌───┐ ┌───┐ ┌───┐ ┌───┐
|
42 |
+
# │ k ││ k ││ k ││ k │ │ k │ │ k │ │ k │
|
43 |
+
# └───┘└───┘└───┘└───┘ └───┘ └───┘ └───┘
|
44 |
+
# │ │ │ │ ┌──┴──┐ ┌──┴──┐ ┌────┬──┴─┬────┐
|
45 |
+
# ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐┌───┐ ┌───┐┌───┐┌───┐┌───┐
|
46 |
+
# │ q ││ q ││ q ││ q │ │ q ││ q ││ q ││ q │ │ q ││ q ││ q ││ q │
|
47 |
+
# └───┘└───┘└───┘└───┘ └───┘└───┘└───┘└───┘ └───┘└───┘└───┘└───┘
|
48 |
+
# ◀──────────────────▶ ◀──────────────────▶ ◀──────────────────▶
|
49 |
+
# MHA GQA MQA
|
50 |
+
# n_query_groups=4 n_query_groups=2 n_query_groups=1
|
51 |
+
#
|
52 |
+
# credit https://arxiv.org/pdf/2305.13245.pdf
|
53 |
+
n_query_groups: Optional[int] = None
|
54 |
+
shared_attention_norm: bool = False
|
55 |
+
norm_class_name: Literal["LayerNorm", "RMSNorm"] = "LayerNorm"
|
56 |
+
norm_eps: float = 1e-5
|
57 |
+
mlp_class_name: Literal["GptNeoxMLP", "LLaMAMLP", "GemmaMLP", "LLaMAMoE"] = (
|
58 |
+
"GptNeoxMLP"
|
59 |
+
)
|
60 |
+
gelu_approximate: str = "none"
|
61 |
+
intermediate_size: Optional[int] = None
|
62 |
+
rope_condense_ratio: int = 1
|
63 |
+
rope_base: int = 10000
|
64 |
+
n_expert: int = 0
|
65 |
+
n_expert_per_token: int = 0
|
66 |
+
|
67 |
+
add_qkv_bias: Optional[bool] = None
|
68 |
+
prompt_vocab_size: Optional[int] = None
|
69 |
+
attn_dropout: float = 0.0
|
70 |
+
pos_type: str = "rope"
|
71 |
+
force_align: bool = False
|
72 |
+
use_pretrain_phoneme_emb: bool = False
|
73 |
+
tie_word_embeddings: bool = False
|
74 |
+
|
75 |
+
# setting for mini-omni
|
76 |
+
text_vocab_size:int = 152000
|
77 |
+
cat_audio_vocab_size: int = 29120
|
78 |
+
audio_vocab_size: int = 4160
|
79 |
+
whisper_adapter_dim: int = 768
|
80 |
+
|
81 |
+
post_adapter: bool = False
|
82 |
+
post_adapter_layers: int = 6
|
83 |
+
asr_adapter: str = "llamamlp"
|
84 |
+
|
85 |
+
def __post_init__(self):
|
86 |
+
if not self.name:
|
87 |
+
self.name = self.hf_config.get("name", self.name)
|
88 |
+
|
89 |
+
if self.head_size is None:
|
90 |
+
assert self.n_embd % self.n_head == 0
|
91 |
+
self.head_size = self.n_embd // self.n_head
|
92 |
+
|
93 |
+
# vocab size should be a power of 2 to be optimal on hardware. compute the closest value
|
94 |
+
if self.padded_vocab_size is None:
|
95 |
+
self.padded_vocab_size = find_multiple(
|
96 |
+
self.vocab_size, self.padding_multiple
|
97 |
+
)
|
98 |
+
else:
|
99 |
+
# vocab size shouldn't be larger than padded vocab size
|
100 |
+
self.vocab_size = min(self.vocab_size, self.padded_vocab_size)
|
101 |
+
|
102 |
+
# compute the number of query groups
|
103 |
+
if self.n_query_groups is not None:
|
104 |
+
assert self.n_head % self.n_query_groups == 0
|
105 |
+
else:
|
106 |
+
self.n_query_groups = self.n_head
|
107 |
+
|
108 |
+
# compute the intermediate size for MLP if not set
|
109 |
+
if self.intermediate_size is None:
|
110 |
+
if self.mlp_class_name == "LLaMAMLP":
|
111 |
+
raise ValueError(
|
112 |
+
f"The config {self.name!r}, needs to set the `intermediate_size`"
|
113 |
+
)
|
114 |
+
self.intermediate_size = 4 * self.n_embd
|
115 |
+
|
116 |
+
self.rope_n_elem = int(self.rotary_percentage * self.head_size)
|
117 |
+
|
118 |
+
if self.add_qkv_bias is None:
|
119 |
+
self.add_qkv_bias = self.bias
|
120 |
+
|
121 |
+
@classmethod
|
122 |
+
def from_name(cls, name: str, **kwargs: Any) -> Optional[Self]:
|
123 |
+
if name not in name_to_config:
|
124 |
+
# search through all `config['hf_config']['name']`
|
125 |
+
try:
|
126 |
+
conf_dict = next(
|
127 |
+
config
|
128 |
+
for config in configs
|
129 |
+
if name == config["hf_config"]["name"]
|
130 |
+
or config["hf_config"]["org"] + "/" + config["hf_config"]["name"]
|
131 |
+
== name
|
132 |
+
)
|
133 |
+
except StopIteration:
|
134 |
+
raise ValueError(f"{name!r} is not a supported config name")
|
135 |
+
else:
|
136 |
+
conf_dict = name_to_config[name]
|
137 |
+
|
138 |
+
conf_dict = conf_dict.copy()
|
139 |
+
conf_dict.update(kwargs)
|
140 |
+
return cls(**conf_dict)
|
141 |
+
|
142 |
+
@classmethod
|
143 |
+
def from_file(cls, path: Union[str, Path], **kwargs: Any) -> Self:
|
144 |
+
with open(path, encoding="utf-8") as fp:
|
145 |
+
file_kwargs = yaml.safe_load(fp)
|
146 |
+
if file_kwargs is None:
|
147 |
+
raise ValueError(f"{path} is empty which is likely unexpected.")
|
148 |
+
file_kwargs.update(kwargs)
|
149 |
+
return cls(**file_kwargs)
|
150 |
+
|
151 |
+
@classmethod
|
152 |
+
def from_checkpoint(cls, path: Path, **kwargs: Any) -> Self:
|
153 |
+
"""Automatically load `model_config.yaml` and if it doesn't exist - a matching config from `litgpt/config.py`."""
|
154 |
+
if (config_path := path / "model_config.yaml").is_file():
|
155 |
+
return cls.from_file(config_path, **kwargs)
|
156 |
+
if (model_name := path.name) in name_to_config:
|
157 |
+
return cls.from_name(model_name, **kwargs)
|
158 |
+
raise FileNotFoundError(
|
159 |
+
f"For {str(path)!r} neither 'model_config.yaml' nor matching config exists."
|
160 |
+
)
|
161 |
+
|
162 |
+
@property
|
163 |
+
def mlp_class(self) -> Type:
|
164 |
+
# `self.mlp_class_name` cannot be the type to keep the config serializable
|
165 |
+
return getattr(litgpt.model, self.mlp_class_name)
|
166 |
+
|
167 |
+
@property
|
168 |
+
def norm_class(self) -> Type:
|
169 |
+
# `self.norm_class_name` cannot be the type to keep the config serializable
|
170 |
+
if self.norm_class_name == "RMSNorm":
|
171 |
+
from functools import partial
|
172 |
+
|
173 |
+
from litgpt.model import RMSNorm
|
174 |
+
|
175 |
+
return partial(RMSNorm, add_unit_offset="Gemma" in self.name)
|
176 |
+
return getattr(torch.nn, self.norm_class_name)
|
177 |
+
|
178 |
+
|
179 |
+
configs = []
|
180 |
+
name_to_config = {config["name"]: config for config in configs}
|
litgpt/generate/__init__.py
ADDED
File without changes
|
litgpt/generate/base.py
ADDED
@@ -0,0 +1,795 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
|
2 |
+
|
3 |
+
from typing import Any, Literal, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
# import torch._dynamo.config
|
7 |
+
# import torch._inductor.config
|
8 |
+
|
9 |
+
from litgpt.model import GPT
|
10 |
+
from utils.snac_utils import layershift, snac_config
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
|
14 |
+
def multinomial_num_samples_1(probs: torch.Tensor) -> torch.Tensor:
|
15 |
+
if torch._dynamo.is_compiling():
|
16 |
+
# Faster alternative to `torch.multinomial(probs, num_samples=1)` that is also CUDAGraph friendly
|
17 |
+
distribution = torch.empty_like(probs).exponential_(1)
|
18 |
+
return torch.argmax(probs / distribution, dim=-1, keepdim=True)
|
19 |
+
return torch.multinomial(probs, num_samples=1)
|
20 |
+
|
21 |
+
|
22 |
+
def sample_top_p(logits: torch.Tensor, top_p: float) -> torch.Tensor:
|
23 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=False)
|
24 |
+
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
|
25 |
+
# Example:
|
26 |
+
# sorted_probs=[0.1, 0.15, 0.2, 0.25, 0.3] -> sorted_cumprobs=[0.1, 0.25, 0.45, 0.7, 1.0]
|
27 |
+
# sorted_indices_to_remove = [1, 1, 0, 0, 0] if top_p=0.7
|
28 |
+
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
|
29 |
+
# Keep at least 1 token always to prevent the case where no token is selected
|
30 |
+
# In this case the most probable one is always kept
|
31 |
+
sorted_indices_to_remove[-1:] = 0
|
32 |
+
indices_to_remove = sorted_indices_to_remove.scatter(
|
33 |
+
0, sorted_indices, sorted_indices_to_remove
|
34 |
+
)
|
35 |
+
logits = logits.masked_fill(indices_to_remove, float("-inf"))
|
36 |
+
return logits
|
37 |
+
|
38 |
+
|
39 |
+
def sample(
|
40 |
+
logits: torch.Tensor,
|
41 |
+
temperature: float = 1.0,
|
42 |
+
top_k: Optional[int] = None,
|
43 |
+
top_p: float = 1.0,
|
44 |
+
) -> torch.Tensor:
|
45 |
+
if top_p < 0.0 or top_p > 1.0:
|
46 |
+
raise ValueError(f"top_p must be in [0, 1], got {top_p}")
|
47 |
+
logits = logits[0, -1]
|
48 |
+
# optionally crop the logits to only the top k options
|
49 |
+
if top_k is not None:
|
50 |
+
v, i = torch.topk(logits, min(top_k, logits.size(-1)))
|
51 |
+
# do not use `torch.where` as in nanogpt because it will repeat top-k collisions
|
52 |
+
logits = torch.full_like(logits, float("-inf")).scatter_(-1, i, v)
|
53 |
+
# optionally scale the logits and sample from a probability distribution
|
54 |
+
if temperature > 0.0 or top_p > 0.0:
|
55 |
+
if temperature > 0.0:
|
56 |
+
logits = logits / temperature
|
57 |
+
# optionally crop the logits to smallest set of logits with a cumulative probability above top_p
|
58 |
+
if top_p < 1.0:
|
59 |
+
logits = sample_top_p(logits, top_p)
|
60 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
61 |
+
return multinomial_num_samples_1(probs)
|
62 |
+
return torch.argmax(logits, dim=-1, keepdim=True)
|
63 |
+
|
64 |
+
|
65 |
+
def next_token(
|
66 |
+
model: GPT, input_pos: torch.Tensor, x: list, **kwargs: Any
|
67 |
+
) -> torch.Tensor:
|
68 |
+
input_pos = input_pos.to(model.device)
|
69 |
+
logits_a, logit_t = model(x, input_pos)
|
70 |
+
|
71 |
+
next_audio_tokens = []
|
72 |
+
for logit_a in logits_a:
|
73 |
+
next_a = sample(logit_a, **kwargs).to(dtype=x[0].dtype)
|
74 |
+
next_audio_tokens.append(next_a)
|
75 |
+
next_t = sample(logit_t, **kwargs).to(dtype=x[0].dtype)
|
76 |
+
return next_audio_tokens, next_t
|
77 |
+
|
78 |
+
|
79 |
+
def next_token_asr(
|
80 |
+
model: GPT,
|
81 |
+
input_pos: torch.Tensor,
|
82 |
+
audio_features: torch.tensor,
|
83 |
+
lens: int,
|
84 |
+
input_ids: list,
|
85 |
+
**kwargs: Any,
|
86 |
+
) -> torch.Tensor:
|
87 |
+
input_pos = input_pos.to(model.device)
|
88 |
+
input_ids = [input_id.to(model.device) for input_id in input_ids]
|
89 |
+
logits_a, logit_t = model(audio_features, input_ids, input_pos, whisper_lens=lens)
|
90 |
+
|
91 |
+
next_audio_tokens = []
|
92 |
+
for logit_a in logits_a:
|
93 |
+
next_a = sample(logit_a, **kwargs).to(dtype=input_ids[0].dtype)
|
94 |
+
next_audio_tokens.append(next_a)
|
95 |
+
next_t = sample(logit_t, **kwargs).to(dtype=input_ids[0].dtype)
|
96 |
+
return next_audio_tokens, next_t
|
97 |
+
|
98 |
+
|
99 |
+
def next_token_A1T2(
|
100 |
+
model: GPT,
|
101 |
+
audio_features: torch.tensor,
|
102 |
+
input_ids: list,
|
103 |
+
whisper_lens: int,
|
104 |
+
task: list,
|
105 |
+
input_pos: torch.Tensor,
|
106 |
+
**kwargs: Any,
|
107 |
+
) -> torch.Tensor:
|
108 |
+
input_pos = input_pos.to(model.device)
|
109 |
+
input_ids = [input_id.to(model.device) for input_id in input_ids]
|
110 |
+
logits_a, logit_t = model(
|
111 |
+
audio_features, input_ids, input_pos, whisper_lens=whisper_lens, task=task
|
112 |
+
)
|
113 |
+
|
114 |
+
next_audio_tokens = []
|
115 |
+
for logit_a in logits_a:
|
116 |
+
next_a = sample(logit_a, **kwargs).to(dtype=input_ids[0].dtype)
|
117 |
+
next_audio_tokens.append(next_a)
|
118 |
+
next_t = sample(logit_t, **kwargs).to(dtype=input_ids[0].dtype)
|
119 |
+
return next_audio_tokens, next_t
|
120 |
+
|
121 |
+
|
122 |
+
def next_token_A1T1(
|
123 |
+
model: GPT,
|
124 |
+
audio_features: torch.tensor,
|
125 |
+
input_ids: list,
|
126 |
+
whisper_lens: int,
|
127 |
+
task: list,
|
128 |
+
input_pos: torch.Tensor,
|
129 |
+
**kwargs: Any,
|
130 |
+
) -> torch.Tensor:
|
131 |
+
input_pos = input_pos.to(model.device)
|
132 |
+
input_ids = [input_id.to(model.device) for input_id in input_ids]
|
133 |
+
logits_a, logit_t = model(
|
134 |
+
audio_features, input_ids, input_pos, whisper_lens=whisper_lens, task=task
|
135 |
+
)
|
136 |
+
next_t = sample(logit_t, **kwargs).to(dtype=input_ids[0].dtype)
|
137 |
+
return next_t
|
138 |
+
|
139 |
+
|
140 |
+
def next_token_batch(
|
141 |
+
model: GPT,
|
142 |
+
audio_features: torch.tensor,
|
143 |
+
input_ids: list,
|
144 |
+
whisper_lens: int,
|
145 |
+
task: list,
|
146 |
+
input_pos: torch.Tensor,
|
147 |
+
**kwargs: Any,
|
148 |
+
) -> torch.Tensor:
|
149 |
+
input_pos = input_pos.to(model.device)
|
150 |
+
input_ids = [input_id.to(model.device) for input_id in input_ids]
|
151 |
+
logits_a, logit_t = model(
|
152 |
+
audio_features, input_ids, input_pos, whisper_lens=whisper_lens, task=task
|
153 |
+
)
|
154 |
+
|
155 |
+
for i in range(7):
|
156 |
+
logits_a[i] = logits_a[i][0].unsqueeze(0)
|
157 |
+
logit_t = logit_t[1].unsqueeze(0)
|
158 |
+
|
159 |
+
next_audio_tokens = []
|
160 |
+
for logit_a in logits_a:
|
161 |
+
next_a = sample(logit_a, **kwargs).to(dtype=input_ids[0].dtype)
|
162 |
+
next_audio_tokens.append(next_a)
|
163 |
+
next_t = sample(logit_t, **kwargs).to(dtype=input_ids[0].dtype)
|
164 |
+
return next_audio_tokens, next_t
|
165 |
+
|
166 |
+
|
167 |
+
# torch._dynamo.config.automatic_dynamic_shapes = True
|
168 |
+
# torch._inductor.config.triton.unique_kernel_names = True
|
169 |
+
# torch._inductor.config.coordinate_descent_tuning = True
|
170 |
+
# next_token = torch.compile(next_token, mode="reduce-overhead")
|
171 |
+
|
172 |
+
|
173 |
+
@torch.inference_mode()
|
174 |
+
def generate(
|
175 |
+
model: GPT,
|
176 |
+
input_ids: list,
|
177 |
+
max_returned_tokens: int,
|
178 |
+
*,
|
179 |
+
temperature: float = 1.0,
|
180 |
+
top_k: Optional[int] = None,
|
181 |
+
top_p: float = 1.0,
|
182 |
+
eos_id_a: Optional[int] = None,
|
183 |
+
eos_id_t: Optional[int] = None,
|
184 |
+
pad_id: Optional[int] = None,
|
185 |
+
shift: Optional[int] = None,
|
186 |
+
include_prompt: bool = True,
|
187 |
+
generate_text=False,
|
188 |
+
) -> torch.Tensor:
|
189 |
+
# print("eos_id_a:", eos_id_a)
|
190 |
+
# print("eos_id_t:", eos_id_t)
|
191 |
+
# print("pad_id:", pad_id)
|
192 |
+
"""
|
193 |
+
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
|
194 |
+
The implementation of this function is modified from A. Karpathy's nanoGPT.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
model: The model to use.
|
198 |
+
prompt: Tensor of shape (T) with indices of the prompt sequence.
|
199 |
+
max_returned_tokens: The maximum number of tokens to return (given plus generated).
|
200 |
+
temperature: Scales the predicted logits by 1 / temperature.
|
201 |
+
top_k: If specified, only sample among the tokens with the k highest probabilities.
|
202 |
+
top_p: If specified, it represents the cumulative probability threshold to consider in the sampling process.
|
203 |
+
In top-p sampling, the next token is sampled from the highest probability tokens
|
204 |
+
whose cumulative probability exceeds the threshold `top_p`. When specified,
|
205 |
+
it must be `0 <= top_p <= 1`. Here, `top_p=0` is equivalent
|
206 |
+
to sampling the most probable token, while `top_p=1` samples from the whole distribution.
|
207 |
+
It can be used in conjunction with `top_k` and `temperature` with the following order
|
208 |
+
of application:
|
209 |
+
|
210 |
+
1. `top_k` sampling
|
211 |
+
2. `temperature` scaling
|
212 |
+
3. `top_p` sampling
|
213 |
+
|
214 |
+
For more details, see https://arxiv.org/abs/1904.09751
|
215 |
+
or https://huyenchip.com/2024/01/16/sampling.html#top_p
|
216 |
+
eos_id: If specified, stop generating any more token once the <eos> token is triggered.
|
217 |
+
include_prompt: If true (default) prepends the prompt (after applying the prompt style) to the output.
|
218 |
+
"""
|
219 |
+
T = input_ids[0].size(0)
|
220 |
+
device = input_ids[0].device
|
221 |
+
assert max_returned_tokens > T
|
222 |
+
if model.max_seq_length < max_returned_tokens - 1:
|
223 |
+
# rolling the kv cache based on the `input_pos` value would be necessary. However, doing so would introduce a
|
224 |
+
# data dependency on the `input_pos` tensor and impact model compilation. Since this setting is uncommon, we do
|
225 |
+
# not support it to avoid negatively impacting the overall speed
|
226 |
+
raise NotImplementedError(
|
227 |
+
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
|
228 |
+
)
|
229 |
+
|
230 |
+
for input_id in input_ids:
|
231 |
+
input_id = [input_id]
|
232 |
+
(
|
233 |
+
tokens_A1,
|
234 |
+
tokens_A2,
|
235 |
+
tokens_A3,
|
236 |
+
tokens_A4,
|
237 |
+
tokens_A5,
|
238 |
+
tokens_A6,
|
239 |
+
tokens_A7,
|
240 |
+
tokens_T,
|
241 |
+
) = input_ids
|
242 |
+
|
243 |
+
tokens_A1_output = [tokens_A1]
|
244 |
+
tokens_A2_output = [tokens_A2]
|
245 |
+
tokens_A3_output = [tokens_A3]
|
246 |
+
tokens_A4_output = [tokens_A4]
|
247 |
+
tokens_A5_output = [tokens_A5]
|
248 |
+
tokens_A6_output = [tokens_A6]
|
249 |
+
tokens_A7_output = [tokens_A7]
|
250 |
+
tokens_T_output = [tokens_T]
|
251 |
+
|
252 |
+
list_output = [
|
253 |
+
tokens_A1_output,
|
254 |
+
tokens_A2_output,
|
255 |
+
tokens_A3_output,
|
256 |
+
tokens_A4_output,
|
257 |
+
tokens_A5_output,
|
258 |
+
tokens_A6_output,
|
259 |
+
tokens_A7_output,
|
260 |
+
tokens_T_output,
|
261 |
+
]
|
262 |
+
|
263 |
+
input_pos = torch.tensor([T], device=device)
|
264 |
+
model_input_ids = [
|
265 |
+
tokens_A1.view(1, -1),
|
266 |
+
tokens_A2.view(1, -1),
|
267 |
+
tokens_A3.view(1, -1),
|
268 |
+
tokens_A4.view(1, -1),
|
269 |
+
tokens_A5.view(1, -1),
|
270 |
+
tokens_A6.view(1, -1),
|
271 |
+
tokens_A7.view(1, -1),
|
272 |
+
tokens_T.view(1, -1),
|
273 |
+
]
|
274 |
+
|
275 |
+
tokens_A, token_T = next_token(
|
276 |
+
model,
|
277 |
+
torch.arange(0, T, device=device),
|
278 |
+
model_input_ids,
|
279 |
+
temperature=temperature,
|
280 |
+
top_k=top_k,
|
281 |
+
top_p=top_p,
|
282 |
+
)
|
283 |
+
for i in range(7):
|
284 |
+
list_output[i].append(tokens_A[i].clone())
|
285 |
+
list_output[7].append(token_T.clone())
|
286 |
+
|
287 |
+
# prepare the input for the next iteration
|
288 |
+
for i in range(7):
|
289 |
+
tokens_A[i] = tokens_A[i].clone() + shift + i * snac_config.padded_vocab_size
|
290 |
+
token_T = token_T.clone()
|
291 |
+
|
292 |
+
text_end = False
|
293 |
+
max_returned_tokens = 1000
|
294 |
+
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
|
295 |
+
model_input_ids = [
|
296 |
+
token_a.view(1, -1).to(torch.int32) for token_a in tokens_A
|
297 |
+
] + [token_T.view(1, -1).to(torch.int32)]
|
298 |
+
tokens_A, token_T = next_token(
|
299 |
+
model,
|
300 |
+
input_pos,
|
301 |
+
model_input_ids,
|
302 |
+
temperature=temperature,
|
303 |
+
top_k=top_k,
|
304 |
+
top_p=top_p,
|
305 |
+
)
|
306 |
+
if text_end:
|
307 |
+
token_T = torch.tensor([pad_id], device=device)
|
308 |
+
|
309 |
+
for i in range(7):
|
310 |
+
list_output[i].append(tokens_A[i].clone())
|
311 |
+
list_output[7].append(token_T.clone())
|
312 |
+
|
313 |
+
if tokens_A[-1] == eos_id_a:
|
314 |
+
break
|
315 |
+
if token_T == eos_id_t:
|
316 |
+
if generate_text:
|
317 |
+
break
|
318 |
+
text_end = True
|
319 |
+
|
320 |
+
for i in range(7):
|
321 |
+
tokens_A[i] = tokens_A[i].clone() + shift + i * snac_config.padded_vocab_size
|
322 |
+
token_T = token_T.clone()
|
323 |
+
input_pos = input_pos.add_(1)
|
324 |
+
|
325 |
+
for i in range(len(list_output)):
|
326 |
+
list_output[i] = torch.cat(list_output[i])
|
327 |
+
return list_output
|
328 |
+
|
329 |
+
|
330 |
+
@torch.inference_mode()
|
331 |
+
def generate_TA_BATCH(
|
332 |
+
model: GPT,
|
333 |
+
audio_features: torch.Tensor,
|
334 |
+
input_ids: list,
|
335 |
+
leng,
|
336 |
+
task,
|
337 |
+
max_returned_tokens: int = 1000,
|
338 |
+
*,
|
339 |
+
temperature: float = 1.0,
|
340 |
+
top_k: Optional[int] = None,
|
341 |
+
top_p: float = 1.0,
|
342 |
+
eos_id_a: Optional[int] = None,
|
343 |
+
eos_id_t: Optional[int] = None,
|
344 |
+
pad_id_t: Optional[int] = None,
|
345 |
+
shift: Optional[int] = None,
|
346 |
+
include_prompt: bool = True,
|
347 |
+
generate_text=False,
|
348 |
+
) -> torch.Tensor:
|
349 |
+
|
350 |
+
T = input_ids[0].size(1)
|
351 |
+
device = input_ids[0].device
|
352 |
+
assert max_returned_tokens > T
|
353 |
+
if model.max_seq_length < max_returned_tokens - 1:
|
354 |
+
raise NotImplementedError(
|
355 |
+
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
|
356 |
+
)
|
357 |
+
|
358 |
+
input_pos = torch.tensor([T], device=device)
|
359 |
+
model_input_ids = input_ids
|
360 |
+
|
361 |
+
list_output = [[] for i in range(8)]
|
362 |
+
|
363 |
+
tokens_A, token_T = next_token_batch(
|
364 |
+
model,
|
365 |
+
audio_features.to(torch.float32).to(model.device),
|
366 |
+
input_ids,
|
367 |
+
[T - 3, T - 3],
|
368 |
+
["A1T2", "A1T2"],
|
369 |
+
input_pos=torch.arange(0, T, device=device),
|
370 |
+
temperature=temperature,
|
371 |
+
top_k=top_k,
|
372 |
+
top_p=top_p,
|
373 |
+
)
|
374 |
+
|
375 |
+
for i in range(7):
|
376 |
+
list_output[i].append(tokens_A[i].tolist()[0])
|
377 |
+
list_output[7].append(token_T.tolist()[0])
|
378 |
+
|
379 |
+
model_input_ids = [[] for i in range(8)]
|
380 |
+
for i in range(7):
|
381 |
+
tokens_A[i] = tokens_A[i].clone() + shift + i * snac_config.padded_vocab_size
|
382 |
+
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
|
383 |
+
model_input_ids[i].append(torch.tensor([layershift(snac_config.end_of_audio, i)], device=device))
|
384 |
+
model_input_ids[i] = torch.stack(model_input_ids[i])
|
385 |
+
|
386 |
+
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
387 |
+
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
388 |
+
model_input_ids[-1] = torch.stack(model_input_ids[-1])
|
389 |
+
|
390 |
+
text_end = False
|
391 |
+
|
392 |
+
for _ in range(2, max_returned_tokens - T + 1):
|
393 |
+
tokens_A, token_T = next_token_batch(
|
394 |
+
model,
|
395 |
+
None,
|
396 |
+
model_input_ids,
|
397 |
+
None,
|
398 |
+
None,
|
399 |
+
input_pos=input_pos,
|
400 |
+
temperature=temperature,
|
401 |
+
top_k=top_k,
|
402 |
+
top_p=top_p,
|
403 |
+
)
|
404 |
+
|
405 |
+
if text_end:
|
406 |
+
token_T = torch.tensor([pad_id_t], device=device)
|
407 |
+
|
408 |
+
if tokens_A[-1] == eos_id_a:
|
409 |
+
break
|
410 |
+
if token_T == eos_id_t:
|
411 |
+
text_end = True
|
412 |
+
|
413 |
+
for i in range(7):
|
414 |
+
list_output[i].append(tokens_A[i].tolist()[0])
|
415 |
+
list_output[7].append(token_T.tolist()[0])
|
416 |
+
|
417 |
+
model_input_ids = [[] for i in range(8)]
|
418 |
+
for i in range(7):
|
419 |
+
tokens_A[i] = tokens_A[i].clone() + shift + i * snac_config.padded_vocab_size
|
420 |
+
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
|
421 |
+
model_input_ids[i].append(
|
422 |
+
torch.tensor([layershift(snac_config.end_of_audio, i)], device=device)
|
423 |
+
)
|
424 |
+
model_input_ids[i] = torch.stack(model_input_ids[i])
|
425 |
+
|
426 |
+
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
427 |
+
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
428 |
+
model_input_ids[-1] = torch.stack(model_input_ids[-1])
|
429 |
+
|
430 |
+
input_pos = input_pos.add_(1)
|
431 |
+
|
432 |
+
return list_output
|
433 |
+
|
434 |
+
|
435 |
+
@torch.inference_mode()
|
436 |
+
def generate_TT(
|
437 |
+
model: GPT,
|
438 |
+
audio_features: torch.Tensor,
|
439 |
+
input_ids: list,
|
440 |
+
leng,
|
441 |
+
task,
|
442 |
+
max_returned_tokens: int = 2048,
|
443 |
+
*,
|
444 |
+
temperature: float = 1.0,
|
445 |
+
top_k: Optional[int] = None,
|
446 |
+
top_p: float = 1.0,
|
447 |
+
eos_id_a: Optional[int] = None,
|
448 |
+
eos_id_t: Optional[int] = None,
|
449 |
+
pad_id_t: Optional[int] = None,
|
450 |
+
shift: Optional[int] = None,
|
451 |
+
include_prompt: bool = True,
|
452 |
+
generate_text=False,
|
453 |
+
) -> torch.Tensor:
|
454 |
+
|
455 |
+
T = input_ids[0].size(1)
|
456 |
+
device = input_ids[0].device
|
457 |
+
|
458 |
+
output = []
|
459 |
+
token_T = next_token_A1T1(
|
460 |
+
model,
|
461 |
+
None,
|
462 |
+
input_ids,
|
463 |
+
None,
|
464 |
+
None,
|
465 |
+
input_pos=torch.arange(0, T, device=device),
|
466 |
+
temperature=temperature,
|
467 |
+
top_k=top_k,
|
468 |
+
top_p=top_p,
|
469 |
+
)
|
470 |
+
|
471 |
+
output.append(token_T.clone().tolist()[0])
|
472 |
+
input_pos = torch.tensor([T], device=device)
|
473 |
+
|
474 |
+
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
|
475 |
+
model_input_ids = []
|
476 |
+
for i in range(7):
|
477 |
+
model_input_ids.append(
|
478 |
+
torch.tensor([layershift(snac_config.end_of_audio, i)])
|
479 |
+
.view(1, -1)
|
480 |
+
.to(torch.int32)
|
481 |
+
.to(device)
|
482 |
+
)
|
483 |
+
model_input_ids.append(token_T.clone().view(1, -1).to(torch.int32).to(device))
|
484 |
+
token_T = next_token_A1T1(
|
485 |
+
model,
|
486 |
+
None,
|
487 |
+
model_input_ids,
|
488 |
+
None,
|
489 |
+
None,
|
490 |
+
input_pos=input_pos,
|
491 |
+
temperature=temperature,
|
492 |
+
top_k=top_k,
|
493 |
+
top_p=top_p,
|
494 |
+
)
|
495 |
+
if token_T == eos_id_t:
|
496 |
+
break
|
497 |
+
output.append(token_T.clone().tolist()[0])
|
498 |
+
input_pos = input_pos.add_(1)
|
499 |
+
return output
|
500 |
+
|
501 |
+
|
502 |
+
@torch.inference_mode()
|
503 |
+
def generate_AT(
|
504 |
+
model: GPT,
|
505 |
+
audio_features: torch.Tensor,
|
506 |
+
input_ids: list,
|
507 |
+
leng,
|
508 |
+
task,
|
509 |
+
max_returned_tokens: int = 2048,
|
510 |
+
*,
|
511 |
+
temperature: float = 1.0,
|
512 |
+
top_k: Optional[int] = None,
|
513 |
+
top_p: float = 1.0,
|
514 |
+
eos_id_a: Optional[int] = None,
|
515 |
+
eos_id_t: Optional[int] = None,
|
516 |
+
pad_id_t: Optional[int] = None,
|
517 |
+
shift: Optional[int] = None,
|
518 |
+
include_prompt: bool = True,
|
519 |
+
generate_text=False,
|
520 |
+
) -> torch.Tensor:
|
521 |
+
|
522 |
+
T = input_ids[0].size(1)
|
523 |
+
device = input_ids[0].device
|
524 |
+
|
525 |
+
output = []
|
526 |
+
token_T = next_token_A1T1(
|
527 |
+
model,
|
528 |
+
audio_features.to(torch.float32).to(model.device),
|
529 |
+
input_ids,
|
530 |
+
[T - 3],
|
531 |
+
["AT"],
|
532 |
+
input_pos=torch.arange(0, T, device=device),
|
533 |
+
temperature=temperature,
|
534 |
+
top_k=top_k,
|
535 |
+
top_p=top_p,
|
536 |
+
)
|
537 |
+
output.append(token_T.clone().tolist()[0])
|
538 |
+
input_pos = torch.tensor([T], device=device)
|
539 |
+
text_end = False
|
540 |
+
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
|
541 |
+
model_input_ids = []
|
542 |
+
for i in range(7):
|
543 |
+
model_input_ids.append(
|
544 |
+
torch.tensor([layershift(snac_config.end_of_audio, i)])
|
545 |
+
.view(1, -1)
|
546 |
+
.to(torch.int32)
|
547 |
+
.to(device)
|
548 |
+
)
|
549 |
+
model_input_ids.append(token_T.clone().view(1, -1).to(torch.int32).to(device))
|
550 |
+
token_T = next_token_A1T1(
|
551 |
+
model,
|
552 |
+
None,
|
553 |
+
model_input_ids,
|
554 |
+
None,
|
555 |
+
None,
|
556 |
+
input_pos=input_pos,
|
557 |
+
temperature=temperature,
|
558 |
+
top_k=top_k,
|
559 |
+
top_p=top_p,
|
560 |
+
)
|
561 |
+
if token_T == eos_id_t:
|
562 |
+
break
|
563 |
+
output.append(token_T.clone().tolist()[0])
|
564 |
+
input_pos = input_pos.add_(1)
|
565 |
+
return output
|
566 |
+
|
567 |
+
|
568 |
+
@torch.inference_mode()
|
569 |
+
def generate_TA(
|
570 |
+
model: GPT,
|
571 |
+
audio_features: torch.Tensor,
|
572 |
+
input_ids: list,
|
573 |
+
leng,
|
574 |
+
task,
|
575 |
+
max_returned_tokens: int = 2048,
|
576 |
+
*,
|
577 |
+
temperature: float = 1.0,
|
578 |
+
top_k: Optional[int] = None,
|
579 |
+
top_p: float = 1.0,
|
580 |
+
eos_id_a: Optional[int] = None,
|
581 |
+
eos_id_t: Optional[int] = None,
|
582 |
+
pad_id_t: Optional[int] = None,
|
583 |
+
shift: Optional[int] = None,
|
584 |
+
include_prompt: bool = True,
|
585 |
+
generate_text=False,
|
586 |
+
) -> torch.Tensor:
|
587 |
+
|
588 |
+
T = input_ids[0].size(1)
|
589 |
+
device = input_ids[0].device
|
590 |
+
|
591 |
+
output = [[] for _ in range(8)]
|
592 |
+
tokens_A, token_T = next_token_A1T2(
|
593 |
+
model,
|
594 |
+
None,
|
595 |
+
input_ids,
|
596 |
+
None,
|
597 |
+
None,
|
598 |
+
input_pos=torch.arange(0, T, device=device),
|
599 |
+
temperature=temperature,
|
600 |
+
top_k=top_k,
|
601 |
+
top_p=top_p,
|
602 |
+
)
|
603 |
+
for i in range(7):
|
604 |
+
output[i].append(tokens_A[i].clone().tolist()[0])
|
605 |
+
output[7].append(token_T.clone().tolist()[0])
|
606 |
+
|
607 |
+
input_pos = torch.tensor([T], device=device)
|
608 |
+
text_end = False
|
609 |
+
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
|
610 |
+
|
611 |
+
model_input_ids = []
|
612 |
+
for i in range(7):
|
613 |
+
model_input_ids.append(
|
614 |
+
layershift(tokens_A[i].clone(), i)
|
615 |
+
.view(1, -1)
|
616 |
+
.to(torch.int32)
|
617 |
+
.to(device)
|
618 |
+
)
|
619 |
+
model_input_ids.append(token_T.clone().view(1, -1).to(torch.int32).to(device))
|
620 |
+
|
621 |
+
tokens_A, token_T = next_token_A1T2(
|
622 |
+
model,
|
623 |
+
None,
|
624 |
+
model_input_ids,
|
625 |
+
None,
|
626 |
+
None,
|
627 |
+
input_pos=input_pos,
|
628 |
+
temperature=temperature,
|
629 |
+
top_k=top_k,
|
630 |
+
top_p=top_p,
|
631 |
+
)
|
632 |
+
|
633 |
+
if text_end:
|
634 |
+
token_T = torch.tensor([pad_id_t], device=device)
|
635 |
+
|
636 |
+
if tokens_A[-1] == eos_id_a:
|
637 |
+
break
|
638 |
+
|
639 |
+
if token_T == eos_id_t:
|
640 |
+
text_end = True
|
641 |
+
|
642 |
+
for i in range(7):
|
643 |
+
output[i].append(tokens_A[i].clone().tolist()[0])
|
644 |
+
output[7].append(token_T.clone().tolist()[0])
|
645 |
+
input_pos = input_pos.add_(1)
|
646 |
+
|
647 |
+
return output
|
648 |
+
|
649 |
+
|
650 |
+
@torch.inference_mode()
|
651 |
+
def generate_AA(
|
652 |
+
model: GPT,
|
653 |
+
audio_features: torch.Tensor,
|
654 |
+
input_ids: list,
|
655 |
+
leng,
|
656 |
+
task,
|
657 |
+
max_returned_tokens: int = 2048,
|
658 |
+
*,
|
659 |
+
temperature: float = 1.0,
|
660 |
+
top_k: Optional[int] = None,
|
661 |
+
top_p: float = 1.0,
|
662 |
+
eos_id_a: Optional[int] = None,
|
663 |
+
eos_id_t: Optional[int] = None,
|
664 |
+
pad_id_t: Optional[int] = None,
|
665 |
+
shift: Optional[int] = None,
|
666 |
+
include_prompt: bool = True,
|
667 |
+
generate_text=False,
|
668 |
+
) -> torch.Tensor:
|
669 |
+
|
670 |
+
T = input_ids[0].size(1)
|
671 |
+
device = input_ids[0].device
|
672 |
+
|
673 |
+
output = [[] for _ in range(8)]
|
674 |
+
tokens_A, token_T = next_token_A1T2(
|
675 |
+
model,
|
676 |
+
audio_features.to(torch.float32).to(model.device),
|
677 |
+
input_ids,
|
678 |
+
[T - 3],
|
679 |
+
["A1T2"],
|
680 |
+
input_pos=torch.arange(0, T, device=device),
|
681 |
+
temperature=temperature,
|
682 |
+
top_k=top_k,
|
683 |
+
top_p=top_p,
|
684 |
+
)
|
685 |
+
for i in range(7):
|
686 |
+
output[i].append(tokens_A[i].clone().tolist()[0])
|
687 |
+
output[7].append(token_T.clone().tolist()[0])
|
688 |
+
|
689 |
+
input_pos = torch.tensor([T], device=device)
|
690 |
+
|
691 |
+
text_end = False
|
692 |
+
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
|
693 |
+
|
694 |
+
model_input_ids = []
|
695 |
+
for i in range(7):
|
696 |
+
model_input_ids.append(
|
697 |
+
layershift(tokens_A[i].clone(), i)
|
698 |
+
.view(1, -1)
|
699 |
+
.to(torch.int32)
|
700 |
+
.to(device)
|
701 |
+
)
|
702 |
+
model_input_ids.append(token_T.clone().view(1, -1).to(torch.int32).to(device))
|
703 |
+
|
704 |
+
tokens_A, token_T = next_token_A1T2(
|
705 |
+
model,
|
706 |
+
None,
|
707 |
+
model_input_ids,
|
708 |
+
None,
|
709 |
+
None,
|
710 |
+
input_pos=input_pos,
|
711 |
+
temperature=temperature,
|
712 |
+
top_k=top_k,
|
713 |
+
top_p=top_p,
|
714 |
+
)
|
715 |
+
|
716 |
+
if text_end:
|
717 |
+
token_T = torch.tensor([pad_id_t], device=device)
|
718 |
+
|
719 |
+
if tokens_A[-1] == eos_id_a:
|
720 |
+
break
|
721 |
+
if token_T == eos_id_t:
|
722 |
+
# print("text_end")
|
723 |
+
text_end = True
|
724 |
+
|
725 |
+
for i in range(7):
|
726 |
+
output[i].append(tokens_A[i].clone().tolist()[0])
|
727 |
+
output[7].append(token_T.clone().tolist()[0])
|
728 |
+
input_pos = input_pos.add_(1)
|
729 |
+
|
730 |
+
return output
|
731 |
+
|
732 |
+
|
733 |
+
@torch.inference_mode()
|
734 |
+
def generate_ASR(
|
735 |
+
model: GPT,
|
736 |
+
audio_features: torch.Tensor,
|
737 |
+
input_ids: list,
|
738 |
+
leng,
|
739 |
+
task,
|
740 |
+
max_returned_tokens: int = 1200,
|
741 |
+
*,
|
742 |
+
temperature: float = 1.0,
|
743 |
+
top_k: Optional[int] = None,
|
744 |
+
top_p: float = 1.0,
|
745 |
+
eos_id_a: Optional[int] = None,
|
746 |
+
eos_id_t: Optional[int] = None,
|
747 |
+
pad_id_t: Optional[int] = None,
|
748 |
+
shift: Optional[int] = None,
|
749 |
+
include_prompt: bool = True,
|
750 |
+
generate_text=False,
|
751 |
+
) -> torch.Tensor:
|
752 |
+
|
753 |
+
T = input_ids[0].size(1)
|
754 |
+
device = input_ids[0].device
|
755 |
+
output = []
|
756 |
+
token_T = next_token_A1T1(
|
757 |
+
model,
|
758 |
+
audio_features.to(torch.float32).to(model.device),
|
759 |
+
input_ids,
|
760 |
+
[T - 3],
|
761 |
+
["asr"],
|
762 |
+
input_pos=torch.arange(0, T, device=device),
|
763 |
+
temperature=temperature,
|
764 |
+
top_k=top_k,
|
765 |
+
top_p=top_p,
|
766 |
+
)
|
767 |
+
output.append(token_T.clone().tolist()[0])
|
768 |
+
input_pos = torch.tensor([T], device=device)
|
769 |
+
text_end = False
|
770 |
+
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
|
771 |
+
model_input_ids = []
|
772 |
+
for i in range(7):
|
773 |
+
model_input_ids.append(
|
774 |
+
torch.tensor([layershift(snac_config.end_of_audio, i)])
|
775 |
+
.view(1, -1)
|
776 |
+
.to(torch.int32)
|
777 |
+
.to(device)
|
778 |
+
)
|
779 |
+
model_input_ids.append(token_T.clone().view(1, -1).to(torch.int32).to(device))
|
780 |
+
token_T = next_token_A1T1(
|
781 |
+
model,
|
782 |
+
None,
|
783 |
+
model_input_ids,
|
784 |
+
None,
|
785 |
+
None,
|
786 |
+
input_pos=input_pos,
|
787 |
+
temperature=temperature,
|
788 |
+
top_k=top_k,
|
789 |
+
top_p=top_p,
|
790 |
+
)
|
791 |
+
if token_T == eos_id_t:
|
792 |
+
break
|
793 |
+
output.append(token_T.clone().tolist()[0])
|
794 |
+
input_pos = input_pos.add_(1)
|
795 |
+
return output
|
litgpt/model.py
ADDED
@@ -0,0 +1,618 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
|
2 |
+
|
3 |
+
"""Full definition of a decoder-only transformer-based language model, all of it in this single file.
|
4 |
+
|
5 |
+
Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT and
|
6 |
+
https://github.com/EleutherAI/gpt-neox/tree/main/megatron/model.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import math
|
10 |
+
from typing import Any, Optional, Tuple
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from typing_extensions import Self
|
15 |
+
from litgpt.config import Config
|
16 |
+
|
17 |
+
|
18 |
+
class GPT(nn.Module):
|
19 |
+
def __init__(self, config: Config) -> None:
|
20 |
+
super().__init__()
|
21 |
+
assert config.padded_vocab_size is not None
|
22 |
+
self.config = config
|
23 |
+
if self.config.asr_adapter == "mlp":
|
24 |
+
print("Using MLP adapter for ASR feature")
|
25 |
+
self.whisper_adapter = nn.Linear(config.whisper_adapter_dim, config.n_embd)
|
26 |
+
elif self.config.asr_adapter == "llamamlp":
|
27 |
+
print("using LLAMA MLP adapter for ASR feature")
|
28 |
+
self.whisper_adapter = whisperMLP(config=config)
|
29 |
+
else:
|
30 |
+
raise ValueError("asr_adapter should be mlp or llamamlp")
|
31 |
+
self.lm_head = nn.Linear(
|
32 |
+
config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias
|
33 |
+
)
|
34 |
+
if config.post_adapter:
|
35 |
+
self.transformer = nn.ModuleDict(
|
36 |
+
dict(
|
37 |
+
wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
|
38 |
+
h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
|
39 |
+
post_adapter=nn.ModuleList(
|
40 |
+
Block(config) for _ in range(config.post_adapter_layers)
|
41 |
+
),
|
42 |
+
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
|
43 |
+
post_adapter_audio_ln=config.norm_class(
|
44 |
+
config.n_embd, eps=config.norm_eps
|
45 |
+
),
|
46 |
+
post_adapter_audio_lm_head=nn.Linear(
|
47 |
+
config.n_embd, config.cat_audio_vocab_size, bias=config.lm_head_bias
|
48 |
+
),
|
49 |
+
)
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
self.transformer = nn.ModuleDict(
|
53 |
+
dict(
|
54 |
+
wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
|
55 |
+
h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
|
56 |
+
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
|
57 |
+
)
|
58 |
+
)
|
59 |
+
self.max_seq_length = self.config.block_size
|
60 |
+
self.mask_cache: Optional[torch.Tensor] = None
|
61 |
+
if config.tie_word_embeddings:
|
62 |
+
self.lm_head.weight = self.transformer.wte.weight
|
63 |
+
|
64 |
+
@property
|
65 |
+
def max_seq_length(self) -> int:
|
66 |
+
return self._max_seq_length
|
67 |
+
|
68 |
+
@max_seq_length.setter
|
69 |
+
def max_seq_length(self, value: int) -> None:
|
70 |
+
"""
|
71 |
+
When doing inference, the sequences used might be shorter than the model's context length.
|
72 |
+
This allows setting a smaller number to avoid allocating unused memory
|
73 |
+
"""
|
74 |
+
if value > self.config.block_size:
|
75 |
+
raise ValueError(
|
76 |
+
f"Cannot attend to {value}, block size is only {self.config.block_size}"
|
77 |
+
)
|
78 |
+
self._max_seq_length = value
|
79 |
+
if not hasattr(self, "cos"):
|
80 |
+
# first call
|
81 |
+
cos, sin = self.rope_cache()
|
82 |
+
self.register_buffer("cos", cos, persistent=False)
|
83 |
+
self.register_buffer("sin", sin, persistent=False)
|
84 |
+
# override
|
85 |
+
elif value != self.cos.size(0):
|
86 |
+
self.cos, self.sin = self.rope_cache(device=self.cos.device)
|
87 |
+
# the mask and kv cache size will get updated on `set_kv_cache`. we cannot update it here because we don't know
|
88 |
+
# if the kv cache is expected
|
89 |
+
|
90 |
+
def reset_parameters(self) -> None:
|
91 |
+
# Trigger resetting the rope-cache
|
92 |
+
self.cos, self.sin = self.rope_cache(device=self.cos.device)
|
93 |
+
|
94 |
+
def _init_weights(self, module: nn.Module) -> None:
|
95 |
+
"""Meant to be used with `gpt.apply(gpt._init_weights)`."""
|
96 |
+
if isinstance(module, nn.Linear):
|
97 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
98 |
+
if module.bias is not None:
|
99 |
+
torch.nn.init.zeros_(module.bias)
|
100 |
+
elif isinstance(module, nn.Embedding):
|
101 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
102 |
+
|
103 |
+
def concat_whisper_feat(self, audio_feature, input_ids, T, task):
|
104 |
+
for j in range(len(T)):
|
105 |
+
if task[j] != "T1T2" and task[j] != "T1A2":
|
106 |
+
for i in range(7):
|
107 |
+
input_ids[i][j, 1 : T[j] + 1, :] = audio_feature[j][: T[j]].clone()
|
108 |
+
else:
|
109 |
+
continue
|
110 |
+
return input_ids
|
111 |
+
|
112 |
+
def forward(
|
113 |
+
self,
|
114 |
+
audio_features: torch.Tensor,
|
115 |
+
input_ids: torch.Tensor,
|
116 |
+
input_pos: Optional[torch.Tensor] = None,
|
117 |
+
whisper_lens: Optional[list] = None,
|
118 |
+
task: Optional[str] = None,
|
119 |
+
) -> torch.Tensor:
|
120 |
+
|
121 |
+
show = False
|
122 |
+
T = input_ids[0].size(1)
|
123 |
+
if self.max_seq_length < T:
|
124 |
+
raise ValueError(
|
125 |
+
f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}."
|
126 |
+
)
|
127 |
+
|
128 |
+
if input_pos is not None: # use the kv cache
|
129 |
+
cos = self.cos.index_select(0, input_pos)
|
130 |
+
sin = self.sin.index_select(0, input_pos)
|
131 |
+
if self.mask_cache is None:
|
132 |
+
raise TypeError("You need to call `gpt.set_kv_cache()`")
|
133 |
+
mask = self.mask_cache.index_select(2, input_pos)
|
134 |
+
else:
|
135 |
+
cos = self.cos[:T]
|
136 |
+
sin = self.sin[:T]
|
137 |
+
mask = None
|
138 |
+
|
139 |
+
if audio_features is not None:
|
140 |
+
# get whisper feature
|
141 |
+
x_a = self.whisper_adapter(audio_features)
|
142 |
+
# get input_ids embedding
|
143 |
+
x0, x1, x2, x3, x4, x5, x6, x7 = input_ids
|
144 |
+
|
145 |
+
x0 = self.transformer.wte(x0)
|
146 |
+
x1 = self.transformer.wte(x1)
|
147 |
+
x2 = self.transformer.wte(x2)
|
148 |
+
x3 = self.transformer.wte(x3)
|
149 |
+
x4 = self.transformer.wte(x4)
|
150 |
+
x5 = self.transformer.wte(x5)
|
151 |
+
x6 = self.transformer.wte(x6)
|
152 |
+
x7 = self.transformer.wte(x7)
|
153 |
+
|
154 |
+
# concat whisper feature
|
155 |
+
input_emb = self.concat_whisper_feat(
|
156 |
+
x_a, [x0, x1, x2, x3, x4, x5, x6, x7], whisper_lens, task
|
157 |
+
)
|
158 |
+
x0, x1, x2, x3, x4, x5, x6, x7 = input_emb
|
159 |
+
|
160 |
+
else:
|
161 |
+
x0, x1, x2, x3, x4, x5, x6, x7 = input_ids
|
162 |
+
|
163 |
+
x0 = self.transformer.wte(x0)
|
164 |
+
x1 = self.transformer.wte(x1)
|
165 |
+
x2 = self.transformer.wte(x2)
|
166 |
+
x3 = self.transformer.wte(x3)
|
167 |
+
x4 = self.transformer.wte(x4)
|
168 |
+
x5 = self.transformer.wte(x5)
|
169 |
+
x6 = self.transformer.wte(x6)
|
170 |
+
x7 = self.transformer.wte(x7)
|
171 |
+
|
172 |
+
x = (x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7) / 8
|
173 |
+
|
174 |
+
if self.config.scale_embeddings:
|
175 |
+
x = x * (self.config.n_embd**0.5)
|
176 |
+
|
177 |
+
for block in self.transformer.h:
|
178 |
+
x = block(x, cos, sin, mask, input_pos)
|
179 |
+
|
180 |
+
|
181 |
+
text_vocab_size = self.config.text_vocab_size
|
182 |
+
audio_vocab_size = self.config.audio_vocab_size
|
183 |
+
|
184 |
+
x_ori = x
|
185 |
+
x_ori = self.transformer.ln_f(x_ori)
|
186 |
+
x_ori = self.lm_head(x_ori) # (b, t, vocab_size)
|
187 |
+
xt = x_ori[..., :text_vocab_size]
|
188 |
+
|
189 |
+
if self.config.post_adapter:
|
190 |
+
for block in self.transformer.post_adapter:
|
191 |
+
x = block(x, cos, sin, mask, input_pos)
|
192 |
+
x = self.transformer.post_adapter_audio_ln(x)
|
193 |
+
x = self.transformer.post_adapter_audio_lm_head(x) # (b, t, vocab_size)
|
194 |
+
xa = []
|
195 |
+
for i in range(7):
|
196 |
+
xa.append(x[..., audio_vocab_size * i : audio_vocab_size * (i + 1)])
|
197 |
+
else:
|
198 |
+
xa = []
|
199 |
+
for i in range(7):
|
200 |
+
xa.append(x_ori[..., text_vocab_size + audio_vocab_size * i : text_vocab_size + audio_vocab_size * (i + 1)])
|
201 |
+
|
202 |
+
return xa, xt
|
203 |
+
|
204 |
+
@classmethod
|
205 |
+
def from_name(cls, name: str, **kwargs: Any) -> Self:
|
206 |
+
return cls(Config.from_name(name, **kwargs))
|
207 |
+
|
208 |
+
def rope_cache(
|
209 |
+
self, device: Optional[torch.device] = None
|
210 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
211 |
+
return build_rope_cache(
|
212 |
+
seq_len=self.max_seq_length,
|
213 |
+
n_elem=self.config.rope_n_elem,
|
214 |
+
device=device,
|
215 |
+
condense_ratio=self.config.rope_condense_ratio,
|
216 |
+
base=self.config.rope_base,
|
217 |
+
)
|
218 |
+
|
219 |
+
def set_kv_cache(
|
220 |
+
self,
|
221 |
+
batch_size: int,
|
222 |
+
rope_cache_length: Optional[int] = None,
|
223 |
+
device: Optional[torch.device] = None,
|
224 |
+
dtype: Optional[torch.dtype] = None,
|
225 |
+
) -> None:
|
226 |
+
if rope_cache_length is None:
|
227 |
+
rope_cache_length = self.cos.size(-1)
|
228 |
+
max_seq_length = self.max_seq_length
|
229 |
+
|
230 |
+
# initialize the kv cache for all blocks
|
231 |
+
for block in self.transformer.h:
|
232 |
+
block.attn.kv_cache = block.attn.build_kv_cache(
|
233 |
+
batch_size, max_seq_length, rope_cache_length, device, dtype
|
234 |
+
)
|
235 |
+
if self.config.post_adapter:
|
236 |
+
for block in self.transformer.post_adapter:
|
237 |
+
block.attn.kv_cache = block.attn.build_kv_cache(
|
238 |
+
batch_size, max_seq_length, rope_cache_length, device, dtype
|
239 |
+
)
|
240 |
+
|
241 |
+
if self.mask_cache is None or self.mask_cache.size(3) != max_seq_length:
|
242 |
+
# passing `attn_mask` to SDPA disables the flash implementation. since we only need the mask
|
243 |
+
# for the kv-cache support (only during inference), we only create it in that situation
|
244 |
+
self.mask_cache = build_mask_cache(max_seq_length, device)
|
245 |
+
|
246 |
+
def clear_kv_cache(self) -> None:
|
247 |
+
self.mask_cache = None
|
248 |
+
for block in self.transformer.h:
|
249 |
+
block.attn.kv_cache = None
|
250 |
+
|
251 |
+
|
252 |
+
class Block(nn.Module):
|
253 |
+
|
254 |
+
def __init__(self, config: Config) -> None:
|
255 |
+
super().__init__()
|
256 |
+
if not config.parallel_residual and config.shared_attention_norm:
|
257 |
+
raise NotImplementedError(
|
258 |
+
"No checkpoint amongst the ones we support uses this configuration"
|
259 |
+
" (non-parallel residual and shared attention norm)."
|
260 |
+
)
|
261 |
+
|
262 |
+
self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps)
|
263 |
+
self.attn = CausalSelfAttention(config)
|
264 |
+
self.norm_2 = (
|
265 |
+
None
|
266 |
+
if config.shared_attention_norm
|
267 |
+
else config.norm_class(config.n_embd, eps=config.norm_eps)
|
268 |
+
)
|
269 |
+
self.mlp = config.mlp_class(config)
|
270 |
+
|
271 |
+
self.config = config
|
272 |
+
|
273 |
+
def forward(
|
274 |
+
self,
|
275 |
+
x: torch.Tensor,
|
276 |
+
cos: torch.Tensor,
|
277 |
+
sin: torch.Tensor,
|
278 |
+
mask: Optional[torch.Tensor] = None,
|
279 |
+
input_pos: Optional[torch.Tensor] = None,
|
280 |
+
) -> torch.Tensor:
|
281 |
+
"""
|
282 |
+
Non-parallel residual Parallel residual
|
283 |
+
┌─ x ┌─ x ────────────┐ Note: if `shared_attention_norm` is True,
|
284 |
+
│ ↓ │ ↓ ↓ the output from `norm_1` is reused
|
285 |
+
│ norm_1 │ norm_1 ───► norm_2
|
286 |
+
│ ↓ │ ↓ ↓
|
287 |
+
│ attn │ attn mlp
|
288 |
+
│ ↓ │ ↓ │
|
289 |
+
┌─ └► + └► + ◄───────────┘
|
290 |
+
│ norm_2
|
291 |
+
│ ↓
|
292 |
+
│ mlp
|
293 |
+
│ ↓
|
294 |
+
└───► +
|
295 |
+
"""
|
296 |
+
|
297 |
+
x_normed = self.norm_1(x)
|
298 |
+
attention_output = self.attn(x_normed, cos, sin, mask, input_pos)
|
299 |
+
|
300 |
+
if self.config.parallel_residual:
|
301 |
+
x_normed = x_normed if self.config.shared_attention_norm else self.norm_2(x)
|
302 |
+
x = self.mlp(x_normed) + attention_output + x
|
303 |
+
else:
|
304 |
+
x = attention_output + x
|
305 |
+
x = self.mlp(self.norm_2(x)) + x
|
306 |
+
return x
|
307 |
+
|
308 |
+
|
309 |
+
class CausalSelfAttention(nn.Module):
|
310 |
+
def __init__(self, config: Config) -> None:
|
311 |
+
super().__init__()
|
312 |
+
shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
|
313 |
+
# key, query, value projections for all heads, but in a batch
|
314 |
+
self.attn = nn.Linear(config.n_embd, shape, bias=config.add_qkv_bias)
|
315 |
+
# output projection
|
316 |
+
# if `head_size` is explicitly specified in the config, `n_emd` might not be equal to `head_size * n_head`
|
317 |
+
self.proj = nn.Linear(
|
318 |
+
config.head_size * config.n_head, config.n_embd, bias=config.bias
|
319 |
+
)
|
320 |
+
# disabled by default
|
321 |
+
self.kv_cache: Optional[KVCache] = None
|
322 |
+
|
323 |
+
self.config = config
|
324 |
+
|
325 |
+
def forward(
|
326 |
+
self,
|
327 |
+
x: torch.Tensor,
|
328 |
+
cos: torch.Tensor,
|
329 |
+
sin: torch.Tensor,
|
330 |
+
mask: Optional[torch.Tensor] = None,
|
331 |
+
input_pos: Optional[torch.Tensor] = None,
|
332 |
+
) -> torch.Tensor:
|
333 |
+
B, T, C = (
|
334 |
+
x.size()
|
335 |
+
) # batch size, sequence length, embedding dimensionality (n_embd)
|
336 |
+
|
337 |
+
qkv = self.attn(x)
|
338 |
+
|
339 |
+
# assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`)
|
340 |
+
q_per_kv = self.config.n_head // self.config.n_query_groups
|
341 |
+
total_qkv = q_per_kv + 2 # each group has 1+ queries, 1 key, and 1 value
|
342 |
+
qkv = qkv.view(
|
343 |
+
B, T, self.config.n_query_groups, total_qkv, self.config.head_size
|
344 |
+
)
|
345 |
+
qkv = qkv.permute(0, 2, 3, 1, 4) # (B, n_query_groups, total_qkv, T, hs)
|
346 |
+
|
347 |
+
# split batched computation into three
|
348 |
+
q, k, v = qkv.split((q_per_kv, 1, 1), dim=2)
|
349 |
+
|
350 |
+
# maybe repeat k and v if for the non multi-head attention cases
|
351 |
+
# training: flash attention requires it
|
352 |
+
# inference: multi-query would require a full kv cache so avoid it to limit its memory usage
|
353 |
+
if self.config.n_query_groups != self.config.n_head and (
|
354 |
+
input_pos is None or self.config.n_query_groups != 1
|
355 |
+
):
|
356 |
+
k = k.expand(
|
357 |
+
B, self.config.n_query_groups, q_per_kv, T, self.config.head_size
|
358 |
+
)
|
359 |
+
v = v.expand(
|
360 |
+
B, self.config.n_query_groups, q_per_kv, T, self.config.head_size
|
361 |
+
)
|
362 |
+
|
363 |
+
q = q.reshape(B, -1, T, self.config.head_size) # (B, nh_q, T, hs)
|
364 |
+
k = k.reshape(B, -1, T, self.config.head_size) # (B, nh_k, T, hs)
|
365 |
+
v = v.reshape(B, -1, T, self.config.head_size) # (B, nh_v, T, hs)
|
366 |
+
|
367 |
+
q_roped = apply_rope(q[..., : self.config.rope_n_elem], cos, sin)
|
368 |
+
k_roped = apply_rope(k[..., : self.config.rope_n_elem], cos, sin)
|
369 |
+
q = torch.cat((q_roped, q[..., self.config.rope_n_elem :]), dim=-1)
|
370 |
+
k = torch.cat((k_roped, k[..., self.config.rope_n_elem :]), dim=-1)
|
371 |
+
|
372 |
+
if input_pos is not None:
|
373 |
+
if not isinstance(self.kv_cache, KVCache):
|
374 |
+
raise TypeError("You need to call `gpt.set_kv_cache()`")
|
375 |
+
k, v = self.kv_cache(input_pos, k, v)
|
376 |
+
|
377 |
+
y = self.scaled_dot_product_attention(q, k, v, mask)
|
378 |
+
|
379 |
+
y = y.reshape(
|
380 |
+
B, T, self.config.head_size * self.config.n_head
|
381 |
+
) # re-assemble all head outputs side by side
|
382 |
+
|
383 |
+
# output projection
|
384 |
+
return self.proj(y)
|
385 |
+
|
386 |
+
def scaled_dot_product_attention(
|
387 |
+
self,
|
388 |
+
q: torch.Tensor,
|
389 |
+
k: torch.Tensor,
|
390 |
+
v: torch.Tensor,
|
391 |
+
mask: Optional[torch.Tensor] = None,
|
392 |
+
) -> torch.Tensor:
|
393 |
+
scale = 1.0 / math.sqrt(self.config.head_size)
|
394 |
+
y = torch.nn.functional.scaled_dot_product_attention(
|
395 |
+
q, k, v, attn_mask=mask, dropout_p=0.0, scale=scale, is_causal=mask is None
|
396 |
+
)
|
397 |
+
return y.transpose(1, 2)
|
398 |
+
|
399 |
+
def build_kv_cache(
|
400 |
+
self,
|
401 |
+
batch_size: int,
|
402 |
+
max_seq_length: int,
|
403 |
+
rope_cache_length: Optional[int] = None,
|
404 |
+
device: Optional[torch.device] = None,
|
405 |
+
dtype: Optional[torch.dtype] = None,
|
406 |
+
) -> "KVCache":
|
407 |
+
heads = 1 if self.config.n_query_groups == 1 else self.config.n_head
|
408 |
+
v_shape = (batch_size, heads, max_seq_length, self.config.head_size)
|
409 |
+
if rope_cache_length is None:
|
410 |
+
if self.config.rotary_percentage != 1.0:
|
411 |
+
raise TypeError(
|
412 |
+
"Please pass the `rope_cache_length=gpt.cos.size(-1)` value"
|
413 |
+
)
|
414 |
+
k_shape = v_shape
|
415 |
+
else:
|
416 |
+
k_shape = (
|
417 |
+
batch_size,
|
418 |
+
heads,
|
419 |
+
max_seq_length,
|
420 |
+
rope_cache_length + self.config.head_size - self.config.rope_n_elem,
|
421 |
+
)
|
422 |
+
return KVCache(k_shape, v_shape, device=device, dtype=dtype)
|
423 |
+
|
424 |
+
|
425 |
+
class GptNeoxMLP(nn.Module):
|
426 |
+
def __init__(self, config: Config) -> None:
|
427 |
+
super().__init__()
|
428 |
+
self.fc = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
|
429 |
+
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)
|
430 |
+
|
431 |
+
self.config = config
|
432 |
+
|
433 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
434 |
+
x = self.fc(x)
|
435 |
+
x = torch.nn.functional.gelu(x, approximate=self.config.gelu_approximate)
|
436 |
+
return self.proj(x)
|
437 |
+
|
438 |
+
|
439 |
+
class LLaMAMLP(nn.Module):
|
440 |
+
def __init__(self, config: Config) -> None:
|
441 |
+
super().__init__()
|
442 |
+
self.fc_1 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
|
443 |
+
self.fc_2 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
|
444 |
+
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)
|
445 |
+
|
446 |
+
self.config = config
|
447 |
+
|
448 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
449 |
+
x_fc_1 = self.fc_1(x)
|
450 |
+
x_fc_2 = self.fc_2(x)
|
451 |
+
x = torch.nn.functional.silu(x_fc_1) * x_fc_2
|
452 |
+
return self.proj(x)
|
453 |
+
|
454 |
+
|
455 |
+
class whisperMLP(nn.Module):
|
456 |
+
def __init__(self, config: Config) -> None:
|
457 |
+
super().__init__()
|
458 |
+
self.fc_1 = nn.Linear(config.whisper_adapter_dim, config.intermediate_size, bias=config.bias)
|
459 |
+
self.fc_2 = nn.Linear(config.whisper_adapter_dim, config.intermediate_size, bias=config.bias)
|
460 |
+
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)
|
461 |
+
|
462 |
+
self.config = config
|
463 |
+
|
464 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
465 |
+
x_fc_1 = self.fc_1(x)
|
466 |
+
x_fc_2 = self.fc_2(x)
|
467 |
+
x = torch.nn.functional.silu(x_fc_1) * x_fc_2
|
468 |
+
return self.proj(x)
|
469 |
+
|
470 |
+
|
471 |
+
class GemmaMLP(LLaMAMLP):
|
472 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
473 |
+
x_fc_1 = self.fc_1(x)
|
474 |
+
x_fc_2 = self.fc_2(x)
|
475 |
+
x = (
|
476 |
+
torch.nn.functional.gelu(x_fc_1, approximate=self.config.gelu_approximate)
|
477 |
+
* x_fc_2
|
478 |
+
)
|
479 |
+
return self.proj(x)
|
480 |
+
|
481 |
+
|
482 |
+
class LLaMAMoE(nn.Module):
|
483 |
+
def __init__(self, config: Config) -> None:
|
484 |
+
super().__init__()
|
485 |
+
self.gate = nn.Linear(config.n_embd, config.n_expert, bias=False)
|
486 |
+
self.experts = nn.ModuleList(LLaMAMLP(config) for _ in range(config.n_expert))
|
487 |
+
|
488 |
+
self.config = config
|
489 |
+
|
490 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
491 |
+
"""
|
492 |
+
Derived from: https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
|
493 |
+
See also figure 1 in https://arxiv.org/abs/2211.15841
|
494 |
+
"""
|
495 |
+
B, T, C = (
|
496 |
+
x.size()
|
497 |
+
) # batch size, sequence length, embedding dimensionality (n_embd)
|
498 |
+
x = x.view(-1, C) # (B*T, C)
|
499 |
+
router = self.gate(x) # (B*T, n_expert)
|
500 |
+
probs, indices = torch.topk(
|
501 |
+
router, self.config.n_expert_per_token
|
502 |
+
) # (B*T, n_expert_per_token)
|
503 |
+
probs = probs.softmax(dim=1, dtype=torch.float).to(dtype=x.dtype)
|
504 |
+
masks = indices.unsqueeze(-1) == torch.arange(
|
505 |
+
self.config.n_expert, device=x.device
|
506 |
+
)
|
507 |
+
masks = masks.permute(2, 0, 1) # (n_expert, B*T, n_expert_per_token)
|
508 |
+
y = torch.zeros_like(x) # (B*T, C)
|
509 |
+
for mask, expert in zip(masks, self.experts):
|
510 |
+
token_idx, expert_idx = torch.where(mask)
|
511 |
+
y[token_idx] += probs[token_idx, expert_idx, None] * expert(x[token_idx])
|
512 |
+
return y.view(B, T, C)
|
513 |
+
|
514 |
+
|
515 |
+
def build_rope_cache(
|
516 |
+
seq_len: int,
|
517 |
+
n_elem: int,
|
518 |
+
device: Optional[torch.device] = None,
|
519 |
+
base: int = 10000,
|
520 |
+
condense_ratio: int = 1,
|
521 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
522 |
+
"""Enhanced Transformer with Rotary Position Embedding.
|
523 |
+
|
524 |
+
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
|
525 |
+
transformers/rope/__init__.py. MIT License:
|
526 |
+
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
|
527 |
+
"""
|
528 |
+
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
529 |
+
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem))
|
530 |
+
|
531 |
+
# Create position indexes `[0, 1, ..., seq_len - 1]`
|
532 |
+
seq_idx = torch.arange(seq_len, device=device) / condense_ratio
|
533 |
+
|
534 |
+
# Calculate the product of position index and $\theta_i$
|
535 |
+
idx_theta = torch.outer(seq_idx, theta).repeat(1, 2)
|
536 |
+
|
537 |
+
return torch.cos(idx_theta), torch.sin(idx_theta)
|
538 |
+
|
539 |
+
|
540 |
+
def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
|
541 |
+
head_size = x.size(-1)
|
542 |
+
x1 = x[..., : head_size // 2] # (B, nh, T, hs/2)
|
543 |
+
x2 = x[..., head_size // 2 :] # (B, nh, T, hs/2)
|
544 |
+
rotated = torch.cat((-x2, x1), dim=-1) # (B, nh, T, hs)
|
545 |
+
roped = (x * cos) + (rotated * sin)
|
546 |
+
return roped.to(dtype=x.dtype)
|
547 |
+
|
548 |
+
|
549 |
+
class KVCache(nn.Module):
|
550 |
+
def __init__(
|
551 |
+
self,
|
552 |
+
k_shape: Tuple[int, int, int, int],
|
553 |
+
v_shape: Tuple[int, int, int, int],
|
554 |
+
device: Optional[torch.device] = None,
|
555 |
+
dtype: Optional[torch.dtype] = None,
|
556 |
+
) -> None:
|
557 |
+
super().__init__()
|
558 |
+
self.register_buffer(
|
559 |
+
"k", torch.zeros(k_shape, device=device, dtype=dtype), persistent=False
|
560 |
+
)
|
561 |
+
self.register_buffer(
|
562 |
+
"v", torch.zeros(v_shape, device=device, dtype=dtype), persistent=False
|
563 |
+
)
|
564 |
+
|
565 |
+
def forward(
|
566 |
+
self, input_pos: torch.Tensor, k: torch.Tensor, v: torch.Tensor
|
567 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
568 |
+
# move the buffer to the activation dtype for when AMP is used
|
569 |
+
self.k = self.k.to(k.dtype)
|
570 |
+
self.v = self.v.to(v.dtype)
|
571 |
+
# update the cache
|
572 |
+
k = self.k.index_copy_(2, input_pos, k)
|
573 |
+
v = self.v.index_copy_(2, input_pos, v)
|
574 |
+
return k, v
|
575 |
+
|
576 |
+
def reset_parameters(self) -> None:
|
577 |
+
torch.nn.init.zeros_(self.k)
|
578 |
+
torch.nn.init.zeros_(self.v)
|
579 |
+
|
580 |
+
|
581 |
+
def build_mask_cache(
|
582 |
+
max_seq_length: int, device: Optional[torch.device] = None
|
583 |
+
) -> torch.Tensor:
|
584 |
+
ones = torch.ones((max_seq_length, max_seq_length), device=device, dtype=torch.bool)
|
585 |
+
return torch.tril(ones).unsqueeze(0).unsqueeze(0)
|
586 |
+
|
587 |
+
|
588 |
+
class RMSNorm(torch.nn.Module):
|
589 |
+
"""Root Mean Square Layer Normalization.
|
590 |
+
|
591 |
+
Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License:
|
592 |
+
https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.
|
593 |
+
"""
|
594 |
+
|
595 |
+
def __init__(
|
596 |
+
self, size: int, dim: int = -1, eps: float = 1e-6, add_unit_offset: bool = False
|
597 |
+
) -> None:
|
598 |
+
super().__init__()
|
599 |
+
self.weight = torch.nn.Parameter(torch.ones(size))
|
600 |
+
self.eps = eps
|
601 |
+
self.dim = dim
|
602 |
+
self.add_unit_offset = add_unit_offset
|
603 |
+
|
604 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
605 |
+
dtype = x.dtype
|
606 |
+
x = x.float()
|
607 |
+
# NOTE: the original RMSNorm paper implementation is not equivalent
|
608 |
+
norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
|
609 |
+
x_normed = x * torch.rsqrt(norm_x + self.eps)
|
610 |
+
x_normed = x_normed.to(dtype=dtype)
|
611 |
+
if self.add_unit_offset:
|
612 |
+
# Gemma model requires a unit offset
|
613 |
+
# https://github.com/google/gemma_pytorch/blob/main/gemma/model.py#L176
|
614 |
+
return x_normed * (1 + self.weight)
|
615 |
+
return x_normed * self.weight
|
616 |
+
|
617 |
+
def reset_parameters(self) -> None:
|
618 |
+
torch.nn.init.ones_(self.weight)
|
litgpt/tokenizer.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
|
2 |
+
|
3 |
+
import json
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Optional, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
class Tokenizer:
|
11 |
+
def __init__(self, checkpoint_dir: Union[Path, str]) -> None:
|
12 |
+
checkpoint_dir = Path(checkpoint_dir)
|
13 |
+
if not checkpoint_dir.exists():
|
14 |
+
raise NotADirectoryError(
|
15 |
+
f"The checkpoint directory does not exist: {str(checkpoint_dir)}"
|
16 |
+
)
|
17 |
+
|
18 |
+
self.use_bos = self.check_if_bos_token_used(checkpoint_dir)
|
19 |
+
self.bos_id = None
|
20 |
+
self.eos_id = None
|
21 |
+
|
22 |
+
# some checkpoints have both files, `.json` takes precedence
|
23 |
+
if (vocabulary_path := checkpoint_dir / "tokenizer.json").is_file():
|
24 |
+
from tokenizers import Tokenizer as HFTokenizer
|
25 |
+
|
26 |
+
self.processor = HFTokenizer.from_file(str(vocabulary_path))
|
27 |
+
self.backend = "huggingface"
|
28 |
+
|
29 |
+
if (
|
30 |
+
special_tokens_path := checkpoint_dir / "tokenizer_config.json"
|
31 |
+
).is_file():
|
32 |
+
with open(special_tokens_path, encoding="utf-8") as fp:
|
33 |
+
config = json.load(fp)
|
34 |
+
bos_token = config.get("bos_token")
|
35 |
+
eos_token = config.get("eos_token")
|
36 |
+
if bos_token is not None and isinstance(bos_token, dict):
|
37 |
+
bos_token = bos_token.get("content")
|
38 |
+
if eos_token is not None and isinstance(eos_token, dict):
|
39 |
+
eos_token = eos_token.get("content")
|
40 |
+
self.bos_id = (
|
41 |
+
self.token_to_id(bos_token) if bos_token is not None else None
|
42 |
+
)
|
43 |
+
self.eos_id = (
|
44 |
+
self.token_to_id(eos_token) if eos_token is not None else None
|
45 |
+
)
|
46 |
+
if (
|
47 |
+
special_tokens_path := checkpoint_dir / "generation_config.json"
|
48 |
+
).is_file():
|
49 |
+
with open(special_tokens_path, encoding="utf-8") as fp:
|
50 |
+
config = json.load(fp)
|
51 |
+
if self.bos_id is None:
|
52 |
+
self.bos_id = config.get("bos_token_id")
|
53 |
+
if self.eos_id is None:
|
54 |
+
self.eos_id = config.get("eos_token_id")
|
55 |
+
|
56 |
+
elif (vocabulary_path := checkpoint_dir / "tokenizer.model").is_file():
|
57 |
+
from sentencepiece import SentencePieceProcessor
|
58 |
+
|
59 |
+
self.processor = SentencePieceProcessor(model_file=str(vocabulary_path))
|
60 |
+
self.backend = "sentencepiece"
|
61 |
+
self.bos_id = self.processor.bos_id()
|
62 |
+
self.eos_id = self.processor.eos_id()
|
63 |
+
else:
|
64 |
+
raise NotImplementedError
|
65 |
+
|
66 |
+
@property
|
67 |
+
def vocab_size(self) -> int:
|
68 |
+
if self.backend == "huggingface":
|
69 |
+
return self.processor.get_vocab_size(with_added_tokens=False)
|
70 |
+
if self.backend == "sentencepiece":
|
71 |
+
return self.processor.vocab_size()
|
72 |
+
raise RuntimeError
|
73 |
+
|
74 |
+
def token_to_id(self, token: str) -> int:
|
75 |
+
if self.backend == "huggingface":
|
76 |
+
id_ = self.processor.token_to_id(token)
|
77 |
+
elif self.backend == "sentencepiece":
|
78 |
+
id_ = self.processor.piece_to_id(token)
|
79 |
+
else:
|
80 |
+
raise RuntimeError
|
81 |
+
if id_ is None:
|
82 |
+
raise ValueError(f"token {token!r} not found in the collection.")
|
83 |
+
return id_
|
84 |
+
|
85 |
+
def check_if_bos_token_used(self, checkpoint_dir: Path) -> bool:
|
86 |
+
if not (
|
87 |
+
tokenizer_config_path := checkpoint_dir / "tokenizer_config.json"
|
88 |
+
).is_file():
|
89 |
+
return False
|
90 |
+
with open(tokenizer_config_path, encoding="utf-8") as fp:
|
91 |
+
config = json.load(fp)
|
92 |
+
if "add_bos_token" in config:
|
93 |
+
return config["add_bos_token"]
|
94 |
+
# if `add_bos_token` isn't in the config file, but LLaMA tokenizer is used - return True.
|
95 |
+
# ex: https://huggingface.co/stabilityai/StableBeluga2/blob/main/tokenizer_config.json#L2
|
96 |
+
return config.get("tokenizer_class") == "LlamaTokenizer"
|
97 |
+
|
98 |
+
def encode(
|
99 |
+
self,
|
100 |
+
string: str,
|
101 |
+
device: Optional[torch.device] = None,
|
102 |
+
bos: Optional[bool] = None,
|
103 |
+
eos: bool = False,
|
104 |
+
max_length: int = -1,
|
105 |
+
) -> torch.Tensor:
|
106 |
+
if self.backend == "huggingface":
|
107 |
+
tokens = self.processor.encode(string).ids
|
108 |
+
elif self.backend == "sentencepiece":
|
109 |
+
tokens = self.processor.encode(string)
|
110 |
+
else:
|
111 |
+
raise RuntimeError
|
112 |
+
if bos or (bos is None and self.use_bos):
|
113 |
+
bos_id = self.bos_id
|
114 |
+
if bos_id is None:
|
115 |
+
raise NotImplementedError(
|
116 |
+
"This tokenizer does not have a defined a bos token"
|
117 |
+
)
|
118 |
+
if tokens[0] != bos_id:
|
119 |
+
tokens = [bos_id] + tokens
|
120 |
+
if tokens is None:
|
121 |
+
raise ValueError("`tokens` is None")
|
122 |
+
|
123 |
+
if eos and (not tokens or tokens[-1] != self.eos_id):
|
124 |
+
tokens = tokens + [self.eos_id]
|
125 |
+
if max_length > 0:
|
126 |
+
tokens = tokens[:max_length]
|
127 |
+
return torch.tensor(tokens, dtype=torch.int, device=device)
|
128 |
+
|
129 |
+
def decode(self, tensor: torch.Tensor) -> str:
|
130 |
+
tokens = [tensor.item()] if tensor.ndim == 0 else tensor.tolist()
|
131 |
+
return self.processor.decode(tokens)
|
litgpt/utils.py
ADDED
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
|
2 |
+
|
3 |
+
"""Utility functions for training and inference."""
|
4 |
+
import inspect
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import pickle
|
8 |
+
import shutil
|
9 |
+
import sys
|
10 |
+
from dataclasses import asdict, is_dataclass
|
11 |
+
from io import BytesIO
|
12 |
+
from pathlib import Path
|
13 |
+
from typing import (
|
14 |
+
TYPE_CHECKING,
|
15 |
+
Any,
|
16 |
+
Dict,
|
17 |
+
Iterable,
|
18 |
+
List,
|
19 |
+
Literal,
|
20 |
+
Mapping,
|
21 |
+
Optional,
|
22 |
+
TypeVar,
|
23 |
+
Union,
|
24 |
+
)
|
25 |
+
|
26 |
+
import lightning as L
|
27 |
+
import torch
|
28 |
+
import torch.nn as nn
|
29 |
+
import torch.utils._device
|
30 |
+
import yaml
|
31 |
+
from lightning.fabric.loggers import CSVLogger, TensorBoardLogger
|
32 |
+
from lightning.fabric.strategies import FSDPStrategy
|
33 |
+
from lightning.fabric.utilities.load import _lazy_load as lazy_load
|
34 |
+
from lightning.pytorch.loggers import WandbLogger
|
35 |
+
from lightning.pytorch.cli import instantiate_class
|
36 |
+
from torch.serialization import normalize_storage_type
|
37 |
+
from typing_extensions import Self
|
38 |
+
|
39 |
+
if TYPE_CHECKING:
|
40 |
+
from litgpt import GPT, Config
|
41 |
+
|
42 |
+
|
43 |
+
def init_out_dir(out_dir: Path) -> Path:
|
44 |
+
if not out_dir.is_absolute() and "LIGHTNING_ARTIFACTS_DIR" in os.environ:
|
45 |
+
return Path(os.getenv("LIGHTNING_ARTIFACTS_DIR")) / out_dir
|
46 |
+
return out_dir
|
47 |
+
|
48 |
+
|
49 |
+
def find_resume_path(
|
50 |
+
resume: Union[bool, Literal["auto"], Path], out_dir: Path
|
51 |
+
) -> Optional[Path]:
|
52 |
+
if not resume or isinstance(resume, Path):
|
53 |
+
return resume
|
54 |
+
|
55 |
+
resume_path = max(
|
56 |
+
out_dir.rglob("step-*/*.pth"),
|
57 |
+
key=(lambda p: int(p.parent.name.split("-")[1])),
|
58 |
+
default=None,
|
59 |
+
)
|
60 |
+
if resume == "auto":
|
61 |
+
return resume_path
|
62 |
+
if resume is True and resume_path is None:
|
63 |
+
raise FileNotFoundError(
|
64 |
+
f"You passed `--resume=True`, but no checkpont file was found in `--out_dir={out_dir}`."
|
65 |
+
)
|
66 |
+
return resume_path
|
67 |
+
|
68 |
+
|
69 |
+
def find_multiple(n: int, k: int) -> int:
|
70 |
+
assert k > 0
|
71 |
+
if n % k == 0:
|
72 |
+
return n
|
73 |
+
return n + k - (n % k)
|
74 |
+
|
75 |
+
|
76 |
+
def num_parameters(module: nn.Module, requires_grad: Optional[bool] = None) -> int:
|
77 |
+
total = 0
|
78 |
+
for p in module.parameters():
|
79 |
+
if requires_grad is None or p.requires_grad == requires_grad:
|
80 |
+
if hasattr(p, "quant_state"):
|
81 |
+
# bitsandbytes 4bit layer support
|
82 |
+
total += math.prod(p.quant_state.shape)
|
83 |
+
else:
|
84 |
+
total += p.numel()
|
85 |
+
return total
|
86 |
+
|
87 |
+
|
88 |
+
def reset_parameters(module: nn.Module) -> None:
|
89 |
+
"""Calls `reset_parameters` on the module and all its submodules."""
|
90 |
+
for mod in module.modules():
|
91 |
+
if callable(getattr(mod, "reset_parameters", None)):
|
92 |
+
mod.reset_parameters()
|
93 |
+
|
94 |
+
|
95 |
+
def check_valid_checkpoint_dir(
|
96 |
+
checkpoint_dir: Path,
|
97 |
+
model_filename: str = "lit_model.pth",
|
98 |
+
verbose: bool = True,
|
99 |
+
raise_error: bool = False,
|
100 |
+
) -> None:
|
101 |
+
files = {
|
102 |
+
model_filename: (checkpoint_dir / model_filename).is_file(),
|
103 |
+
"model_config.yaml": (checkpoint_dir / "model_config.yaml").is_file(),
|
104 |
+
"tokenizer.json OR tokenizer.model": (
|
105 |
+
checkpoint_dir / "tokenizer.json"
|
106 |
+
).is_file()
|
107 |
+
or (checkpoint_dir / "tokenizer.model").is_file(),
|
108 |
+
"tokenizer_config.json": (checkpoint_dir / "tokenizer_config.json").is_file(),
|
109 |
+
}
|
110 |
+
if checkpoint_dir.is_dir():
|
111 |
+
if all(files.values()):
|
112 |
+
# we're good
|
113 |
+
return
|
114 |
+
problem = f" is missing the files: {[f for f, exists in files.items() if not exists]!r}"
|
115 |
+
else:
|
116 |
+
problem = " is not a checkpoint directory"
|
117 |
+
|
118 |
+
# list locally available checkpoints
|
119 |
+
available = list(Path("checkpoints").glob("*/*"))
|
120 |
+
if available:
|
121 |
+
options = "\n".join([""] + [repr(str(p.resolve())) for p in available])
|
122 |
+
extra = f"\nYou have downloaded locally:{options}\n"
|
123 |
+
else:
|
124 |
+
extra = ""
|
125 |
+
|
126 |
+
if verbose:
|
127 |
+
error_message = (
|
128 |
+
f"checkpoint_dir {str(checkpoint_dir.absolute())!r}{problem}."
|
129 |
+
"\nFind download instructions at https://github.com/Lightning-AI/litgpt/blob/main/tutorials\n"
|
130 |
+
f"{extra}\nSee all download options by running:\n litgpt download"
|
131 |
+
)
|
132 |
+
print(error_message, file=sys.stderr)
|
133 |
+
|
134 |
+
if raise_error:
|
135 |
+
raise FileNotFoundError(
|
136 |
+
f"checkpoint_dir {str(checkpoint_dir.absolute())!r}{problem}."
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
raise SystemExit(1)
|
140 |
+
|
141 |
+
|
142 |
+
class SavingProxyForStorage:
|
143 |
+
def __init__(self, obj, saver, protocol_version=5):
|
144 |
+
self.protocol_version = protocol_version
|
145 |
+
self.saver = saver
|
146 |
+
if not (isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj)):
|
147 |
+
raise TypeError(f"expected storage, not {type(obj)}")
|
148 |
+
|
149 |
+
# this logic is taken from PyTorch 2.0+ torch/serialization.py
|
150 |
+
if isinstance(obj, torch.storage.TypedStorage):
|
151 |
+
# PT upstream wants to deprecate this eventually...
|
152 |
+
storage = obj._untyped_storage
|
153 |
+
storage_type_str = obj._pickle_storage_type()
|
154 |
+
storage_type = getattr(torch, storage_type_str)
|
155 |
+
storage_numel = obj._size()
|
156 |
+
else:
|
157 |
+
storage = obj
|
158 |
+
storage_type = normalize_storage_type(type(obj))
|
159 |
+
storage_numel = storage.nbytes()
|
160 |
+
|
161 |
+
storage_key = saver._write_storage_and_return_key(storage)
|
162 |
+
location = torch.serialization.location_tag(storage)
|
163 |
+
|
164 |
+
self.storage_info = (
|
165 |
+
"storage",
|
166 |
+
storage_type,
|
167 |
+
storage_key,
|
168 |
+
location,
|
169 |
+
storage_numel,
|
170 |
+
)
|
171 |
+
|
172 |
+
def __reduce_ex__(self, protocol_version):
|
173 |
+
assert False, "this should be handled with out of band"
|
174 |
+
|
175 |
+
|
176 |
+
class SavingProxyForTensor:
|
177 |
+
def __init__(self, tensor, saver, protocol_version=5):
|
178 |
+
self.protocol_version = protocol_version
|
179 |
+
self.reduce_ret_fn, reduce_args = tensor.__reduce_ex__(protocol_version)
|
180 |
+
if reduce_args[0] == torch._utils._rebuild_tensor_v2:
|
181 |
+
# for Tensors with Python attributes
|
182 |
+
(a0, a1, (storage, *a2_other), *other_reduce_args) = reduce_args
|
183 |
+
assert isinstance(
|
184 |
+
storage, torch.storage.TypedStorage
|
185 |
+
), "Please check for updates"
|
186 |
+
storage_proxy = SavingProxyForStorage(
|
187 |
+
storage, saver, protocol_version=protocol_version
|
188 |
+
)
|
189 |
+
self.reduce_args = (a0, a1, (storage_proxy, *a2_other), *other_reduce_args)
|
190 |
+
else:
|
191 |
+
(storage, *other_reduce_args) = reduce_args
|
192 |
+
assert isinstance(
|
193 |
+
storage, torch.storage.TypedStorage
|
194 |
+
), "Please check for updates"
|
195 |
+
storage_proxy = SavingProxyForStorage(
|
196 |
+
storage, saver, protocol_version=protocol_version
|
197 |
+
)
|
198 |
+
self.reduce_args = (storage_proxy, *other_reduce_args)
|
199 |
+
|
200 |
+
def __reduce_ex__(self, protocol_version):
|
201 |
+
if protocol_version != self.protocol_version:
|
202 |
+
raise RuntimeError(
|
203 |
+
f"Unexpected protocol version: expected {self.protocol_version}, got {protocol_version}"
|
204 |
+
)
|
205 |
+
return self.reduce_ret_fn, self.reduce_args
|
206 |
+
|
207 |
+
|
208 |
+
class IncrementalPyTorchPickler(pickle.Pickler):
|
209 |
+
def __init__(self, saver, *args, **kwargs):
|
210 |
+
super().__init__(*args, **kwargs)
|
211 |
+
self.storage_dtypes = {}
|
212 |
+
self.saver = saver
|
213 |
+
self.id_map = {}
|
214 |
+
|
215 |
+
# this logic is taken from PyTorch 2.0+ torch/serialization.py
|
216 |
+
def persistent_id(self, obj):
|
217 |
+
# FIXME: the docs say that persistent_id should only return a string
|
218 |
+
# but torch store returns tuples. This works only in the binary protocol
|
219 |
+
# see
|
220 |
+
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
|
221 |
+
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
|
222 |
+
if isinstance(obj, SavingProxyForStorage):
|
223 |
+
return obj.storage_info
|
224 |
+
|
225 |
+
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
|
226 |
+
if isinstance(obj, torch.storage.TypedStorage):
|
227 |
+
# TODO: Once we decide to break serialization FC, this case
|
228 |
+
# can be deleted
|
229 |
+
storage = obj._untyped_storage
|
230 |
+
storage_dtype = obj.dtype
|
231 |
+
storage_type_str = obj._pickle_storage_type()
|
232 |
+
storage_type = getattr(torch, storage_type_str)
|
233 |
+
storage_numel = obj._size()
|
234 |
+
|
235 |
+
else:
|
236 |
+
storage = obj
|
237 |
+
storage_dtype = torch.uint8
|
238 |
+
storage_type = normalize_storage_type(type(obj))
|
239 |
+
storage_numel = storage.nbytes()
|
240 |
+
|
241 |
+
# If storage is allocated, ensure that any other saved storages
|
242 |
+
# pointing to the same data all have the same dtype. If storage is
|
243 |
+
# not allocated, don't perform this check
|
244 |
+
if storage.data_ptr() != 0:
|
245 |
+
if storage.data_ptr() in self.storage_dtypes:
|
246 |
+
if storage_dtype != self.storage_dtypes[storage.data_ptr()]:
|
247 |
+
raise RuntimeError(
|
248 |
+
"Cannot save multiple tensors or storages that view the same data as different types"
|
249 |
+
)
|
250 |
+
else:
|
251 |
+
self.storage_dtypes[storage.data_ptr()] = storage_dtype
|
252 |
+
|
253 |
+
storage_key = self.id_map.get(storage._cdata)
|
254 |
+
if storage_key is None:
|
255 |
+
storage_key = self.saver._write_storage_and_return_key(storage)
|
256 |
+
self.id_map[storage._cdata] = storage_key
|
257 |
+
location = torch.serialization.location_tag(storage)
|
258 |
+
|
259 |
+
return ("storage", storage_type, storage_key, location, storage_numel)
|
260 |
+
|
261 |
+
return None
|
262 |
+
|
263 |
+
|
264 |
+
class incremental_save:
|
265 |
+
def __init__(self, name):
|
266 |
+
self.name = name
|
267 |
+
self.zipfile = torch._C.PyTorchFileWriter(str(name))
|
268 |
+
self.has_saved = False
|
269 |
+
self.next_key = 0
|
270 |
+
|
271 |
+
def __enter__(self):
|
272 |
+
return self
|
273 |
+
|
274 |
+
def store_early(self, tensor):
|
275 |
+
if isinstance(tensor, torch.Tensor):
|
276 |
+
return SavingProxyForTensor(tensor, self)
|
277 |
+
raise TypeError(f"can only store tensors early, not {type(tensor)}")
|
278 |
+
|
279 |
+
def save(self, obj):
|
280 |
+
if self.has_saved:
|
281 |
+
raise RuntimeError("have already saved")
|
282 |
+
# Write the pickle data for `obj`
|
283 |
+
data_buf = BytesIO()
|
284 |
+
pickler = IncrementalPyTorchPickler(self, data_buf, protocol=5)
|
285 |
+
pickler.dump(obj)
|
286 |
+
data_value = data_buf.getvalue()
|
287 |
+
self.zipfile.write_record("data.pkl", data_value, len(data_value))
|
288 |
+
self.has_saved = True
|
289 |
+
|
290 |
+
def _write_storage_and_return_key(self, storage):
|
291 |
+
if self.has_saved:
|
292 |
+
raise RuntimeError("have already saved")
|
293 |
+
key = self.next_key
|
294 |
+
self.next_key += 1
|
295 |
+
name = f"data/{key}"
|
296 |
+
if storage.device.type != "cpu":
|
297 |
+
storage = storage.cpu()
|
298 |
+
num_bytes = storage.nbytes()
|
299 |
+
self.zipfile.write_record(name, storage.data_ptr(), num_bytes)
|
300 |
+
return key
|
301 |
+
|
302 |
+
def __exit__(self, type, value, traceback):
|
303 |
+
self.zipfile.write_end_of_file()
|
304 |
+
|
305 |
+
|
306 |
+
T = TypeVar("T")
|
307 |
+
|
308 |
+
|
309 |
+
def chunked_cross_entropy(
|
310 |
+
logits: Union[torch.Tensor, List[torch.Tensor]],
|
311 |
+
targets: torch.Tensor,
|
312 |
+
chunk_size: int = 128,
|
313 |
+
ignore_index: int = -100,
|
314 |
+
) -> torch.Tensor:
|
315 |
+
# with large max_sequence_lengths, the beginning of `backward` allocates a large memory chunk which can dominate
|
316 |
+
# the memory usage in fine-tuning settings with low number of parameters.
|
317 |
+
# as a workaround hack, the cross entropy computation is chunked to force it to deallocate on the go, reducing
|
318 |
+
# the memory spike's magnitude
|
319 |
+
|
320 |
+
# lm_head was chunked (we are fine-tuning)
|
321 |
+
if isinstance(logits, list):
|
322 |
+
# don't want to chunk cross entropy
|
323 |
+
if chunk_size == 0:
|
324 |
+
logits = torch.cat(logits, dim=1)
|
325 |
+
logits = logits.reshape(-1, logits.size(-1))
|
326 |
+
targets = targets.reshape(-1)
|
327 |
+
return torch.nn.functional.cross_entropy(
|
328 |
+
logits, targets, ignore_index=ignore_index
|
329 |
+
)
|
330 |
+
|
331 |
+
# chunk cross entropy
|
332 |
+
logit_chunks = [
|
333 |
+
logit_chunk.reshape(-1, logit_chunk.size(-1)) for logit_chunk in logits
|
334 |
+
]
|
335 |
+
target_chunks = [
|
336 |
+
target_chunk.reshape(-1)
|
337 |
+
for target_chunk in targets.split(logits[0].size(1), dim=1)
|
338 |
+
]
|
339 |
+
loss_chunks = [
|
340 |
+
torch.nn.functional.cross_entropy(
|
341 |
+
logit_chunk, target_chunk, ignore_index=ignore_index, reduction="none"
|
342 |
+
)
|
343 |
+
for logit_chunk, target_chunk in zip(logit_chunks, target_chunks)
|
344 |
+
]
|
345 |
+
non_masked_elems = (targets != ignore_index).sum()
|
346 |
+
# See [non_masked_elems div note]
|
347 |
+
return torch.cat(loss_chunks).sum() / non_masked_elems.maximum(
|
348 |
+
torch.ones_like(non_masked_elems)
|
349 |
+
)
|
350 |
+
|
351 |
+
# no chunking at all
|
352 |
+
logits = logits.reshape(-1, logits.size(-1))
|
353 |
+
targets = targets.reshape(-1)
|
354 |
+
if chunk_size == 0:
|
355 |
+
return torch.nn.functional.cross_entropy(
|
356 |
+
logits, targets, ignore_index=ignore_index
|
357 |
+
)
|
358 |
+
|
359 |
+
# lm_head wasn't chunked, chunk cross entropy
|
360 |
+
logit_chunks = logits.split(chunk_size)
|
361 |
+
target_chunks = targets.split(chunk_size)
|
362 |
+
loss_chunks = [
|
363 |
+
torch.nn.functional.cross_entropy(
|
364 |
+
logit_chunk, target_chunk, ignore_index=ignore_index, reduction="none"
|
365 |
+
)
|
366 |
+
for logit_chunk, target_chunk in zip(logit_chunks, target_chunks)
|
367 |
+
]
|
368 |
+
non_masked_elems = (targets != ignore_index).sum()
|
369 |
+
# [non_masked_elems div note]:
|
370 |
+
# max(1, non_masked_elems) would be more ergonomic to avoid a division by zero. However that
|
371 |
+
# results in a python int which is then passed back to torch division. By using the
|
372 |
+
# `x.maximum(torch.ones_like(x))` pattern we avoid a cudaStreamSynchronize.
|
373 |
+
return torch.cat(loss_chunks).sum() / non_masked_elems.maximum(
|
374 |
+
torch.ones_like(non_masked_elems)
|
375 |
+
)
|
376 |
+
|
377 |
+
|
378 |
+
def map_old_state_dict_weights(state_dict: Dict, mapping: Mapping, prefix: str) -> Dict:
|
379 |
+
for checkpoint_name, attribute_name in mapping.items():
|
380 |
+
full_checkpoint_name = prefix + checkpoint_name
|
381 |
+
if full_checkpoint_name in state_dict:
|
382 |
+
full_attribute_name = prefix + attribute_name
|
383 |
+
state_dict[full_attribute_name] = state_dict.pop(full_checkpoint_name)
|
384 |
+
return state_dict
|
385 |
+
|
386 |
+
|
387 |
+
def get_default_supported_precision(training: bool) -> str:
|
388 |
+
"""Return default precision that is supported by the hardware: either `bf16` or `16`.
|
389 |
+
|
390 |
+
Args:
|
391 |
+
training: `-mixed` or `-true` version of the precision to use
|
392 |
+
|
393 |
+
Returns:
|
394 |
+
default precision that is suitable for the task and is supported by the hardware
|
395 |
+
"""
|
396 |
+
from lightning.fabric.accelerators import MPSAccelerator
|
397 |
+
|
398 |
+
if MPSAccelerator.is_available() or (
|
399 |
+
torch.cuda.is_available() and not torch.cuda.is_bf16_supported()
|
400 |
+
):
|
401 |
+
return "16-mixed" if training else "16-true"
|
402 |
+
return "bf16-mixed" if training else "bf16-true"
|
403 |
+
|
404 |
+
|
405 |
+
def load_checkpoint(
|
406 |
+
fabric: L.Fabric, model: nn.Module, checkpoint_path: Path, strict: bool = True
|
407 |
+
) -> None:
|
408 |
+
if isinstance(fabric.strategy, FSDPStrategy):
|
409 |
+
fabric.load_raw(checkpoint_path, model, strict=strict)
|
410 |
+
else:
|
411 |
+
state_dict = lazy_load(checkpoint_path)
|
412 |
+
state_dict = state_dict.get("model", state_dict)
|
413 |
+
model.load_state_dict(state_dict, strict=strict)
|
414 |
+
|
415 |
+
|
416 |
+
def flops_per_param(
|
417 |
+
max_seq_length: int, n_layer: int, n_embd: int, n_params: int
|
418 |
+
) -> int:
|
419 |
+
flops_per_token = (
|
420 |
+
2 * n_params
|
421 |
+
) # each parameter is used for a MAC (2 FLOPS) per network operation
|
422 |
+
# this assumes that all samples have a fixed length equal to the block size
|
423 |
+
# which is most likely false during finetuning
|
424 |
+
flops_per_seq = flops_per_token * max_seq_length
|
425 |
+
attn_flops_per_seq = n_layer * 2 * 2 * (n_embd * (max_seq_length**2))
|
426 |
+
return flops_per_seq + attn_flops_per_seq
|
427 |
+
|
428 |
+
|
429 |
+
def estimate_flops(model: "GPT", training: bool) -> int:
|
430 |
+
"""Measures estimated FLOPs for MFU.
|
431 |
+
|
432 |
+
Refs:
|
433 |
+
* https://ar5iv.labs.arxiv.org/html/2205.05198#A1
|
434 |
+
* https://ar5iv.labs.arxiv.org/html/2204.02311#A2
|
435 |
+
"""
|
436 |
+
# using all parameters for this is a naive over estimation because not all model parameters actually contribute to
|
437 |
+
# this FLOP computation (e.g. embedding, norm). For this reason, the result will be higher by a fixed percentage
|
438 |
+
# (~10%) compared to the measured FLOPs, making those lower but more realistic.
|
439 |
+
# For a proper estimate, this needs a more fine-grained calculation as in Appendix A of the paper.
|
440 |
+
n_trainable_params = num_parameters(model, requires_grad=True)
|
441 |
+
trainable_flops = flops_per_param(
|
442 |
+
model.max_seq_length,
|
443 |
+
model.config.n_layer,
|
444 |
+
model.config.n_embd,
|
445 |
+
n_trainable_params,
|
446 |
+
)
|
447 |
+
# forward + backward + gradients (assumes no gradient accumulation)
|
448 |
+
ops_per_step = 3 if training else 1
|
449 |
+
n_frozen_params = num_parameters(model, requires_grad=False)
|
450 |
+
frozen_flops = flops_per_param(
|
451 |
+
model.max_seq_length, model.config.n_layer, model.config.n_embd, n_frozen_params
|
452 |
+
)
|
453 |
+
# forward + backward
|
454 |
+
frozen_ops_per_step = 2 if training else 1
|
455 |
+
return ops_per_step * trainable_flops + frozen_ops_per_step * frozen_flops
|
456 |
+
|
457 |
+
|
458 |
+
class CycleIterator:
|
459 |
+
"""An iterator that cycles through an iterable indefinitely.
|
460 |
+
|
461 |
+
Example:
|
462 |
+
>>> iterator = CycleIterator([1, 2, 3])
|
463 |
+
>>> [next(iterator) for _ in range(5)]
|
464 |
+
[1, 2, 3, 1, 2]
|
465 |
+
|
466 |
+
Note:
|
467 |
+
Unlike ``itertools.cycle``, this iterator does not cache the values of the iterable.
|
468 |
+
"""
|
469 |
+
|
470 |
+
def __init__(self, iterable: Iterable) -> None:
|
471 |
+
self.iterable = iterable
|
472 |
+
self.epoch = 0
|
473 |
+
self._iterator = None
|
474 |
+
|
475 |
+
def __next__(self) -> Any:
|
476 |
+
if self._iterator is None:
|
477 |
+
self._iterator = iter(self.iterable)
|
478 |
+
try:
|
479 |
+
return next(self._iterator)
|
480 |
+
except StopIteration:
|
481 |
+
self._iterator = iter(self.iterable)
|
482 |
+
self.epoch += 1
|
483 |
+
return next(self._iterator)
|
484 |
+
|
485 |
+
def __iter__(self) -> Self:
|
486 |
+
return self
|
487 |
+
|
488 |
+
|
489 |
+
def copy_config_files(source_dir: Path, out_dir: Path) -> None:
|
490 |
+
"""Copies the specified configuration and tokenizer files into the output directory."""
|
491 |
+
|
492 |
+
config_files = ["config.json", "generation_config.json", "model_config.yaml"]
|
493 |
+
tokenizer_files = ["tokenizer.json", "tokenizer.model", "tokenizer_config.json"]
|
494 |
+
|
495 |
+
for file_name in config_files + tokenizer_files:
|
496 |
+
src_path = source_dir / file_name
|
497 |
+
if src_path.exists():
|
498 |
+
shutil.copy(src_path, out_dir)
|
499 |
+
|
500 |
+
|
501 |
+
def CLI(*args: Any, **kwargs: Any) -> Any:
|
502 |
+
from jsonargparse import CLI, set_config_read_mode, set_docstring_parse_options
|
503 |
+
|
504 |
+
set_docstring_parse_options(attribute_docstrings=True)
|
505 |
+
set_config_read_mode(urls_enabled=True)
|
506 |
+
|
507 |
+
return CLI(*args, **kwargs)
|
508 |
+
|
509 |
+
|
510 |
+
def capture_hparams() -> Dict[str, Any]:
|
511 |
+
"""Captures the local variables ('hyperparameters') from where this function gets called."""
|
512 |
+
caller_frame = inspect.currentframe().f_back
|
513 |
+
locals_of_caller = caller_frame.f_locals
|
514 |
+
hparams = {}
|
515 |
+
for name, value in locals_of_caller.items():
|
516 |
+
if value is None or isinstance(value, (int, float, str, bool, Path)):
|
517 |
+
hparams[name] = value
|
518 |
+
elif is_dataclass(value):
|
519 |
+
hparams[name] = asdict(value)
|
520 |
+
else:
|
521 |
+
hparams[name] = str(value)
|
522 |
+
return hparams
|
523 |
+
|
524 |
+
|
525 |
+
def save_hyperparameters(function: callable, checkpoint_dir: Path) -> None:
|
526 |
+
"""Captures the CLI parameters passed to `function` without running `function` and saves them to the checkpoint."""
|
527 |
+
from jsonargparse import capture_parser
|
528 |
+
|
529 |
+
# TODO: Make this more robust
|
530 |
+
# This hack strips away the subcommands from the top-level CLI
|
531 |
+
# to parse the file as if it was called as a script
|
532 |
+
known_commands = [
|
533 |
+
("finetune_full",), # For subcommands, use `("finetune", "full")` etc
|
534 |
+
("finetune_lora",),
|
535 |
+
("finetune_adapter",),
|
536 |
+
("finetune_adapter_v2",),
|
537 |
+
("finetune",),
|
538 |
+
("pretrain",),
|
539 |
+
]
|
540 |
+
for known_command in known_commands:
|
541 |
+
unwanted = slice(1, 1 + len(known_command))
|
542 |
+
if tuple(sys.argv[unwanted]) == known_command:
|
543 |
+
sys.argv[unwanted] = []
|
544 |
+
|
545 |
+
parser = capture_parser(lambda: CLI(function))
|
546 |
+
config = parser.parse_args()
|
547 |
+
parser.save(config, checkpoint_dir / "hyperparameters.yaml", overwrite=True)
|
548 |
+
|
549 |
+
|
550 |
+
def save_config(config: "Config", checkpoint_dir: Path) -> None:
|
551 |
+
config_dict = asdict(config)
|
552 |
+
with open(checkpoint_dir / "model_config.yaml", "w", encoding="utf-8") as fp:
|
553 |
+
yaml.dump(config_dict, fp)
|
554 |
+
|
555 |
+
|
556 |
+
def parse_devices(devices: Union[str, int]) -> int:
|
557 |
+
if devices in (-1, "auto"):
|
558 |
+
return torch.cuda.device_count() or 1
|
559 |
+
if isinstance(devices, int) and devices > 0:
|
560 |
+
return devices
|
561 |
+
raise ValueError(f"Devices must be 'auto' or a positive integer, got: {devices!r}")
|
562 |
+
|
563 |
+
|
564 |
+
def choose_logger(
|
565 |
+
logger_name: Literal["csv", "tensorboard", "wandb"],
|
566 |
+
out_dir: Path,
|
567 |
+
name: str,
|
568 |
+
log_interval: int = 1,
|
569 |
+
resume: Optional[bool] = None,
|
570 |
+
**kwargs: Any,
|
571 |
+
):
|
572 |
+
if logger_name == "csv":
|
573 |
+
return CSVLogger(
|
574 |
+
root_dir=(out_dir / "logs"),
|
575 |
+
name="csv",
|
576 |
+
flush_logs_every_n_steps=log_interval,
|
577 |
+
**kwargs,
|
578 |
+
)
|
579 |
+
if logger_name == "tensorboard":
|
580 |
+
return TensorBoardLogger(
|
581 |
+
root_dir=(out_dir / "logs"), name="tensorboard", **kwargs
|
582 |
+
)
|
583 |
+
if logger_name == "wandb":
|
584 |
+
return WandbLogger(project=name, resume=resume, **kwargs)
|
585 |
+
raise ValueError(
|
586 |
+
f"`--logger_name={logger_name}` is not a valid option. Choose from 'csv', 'tensorboard', 'wandb'."
|
587 |
+
)
|
588 |
+
|
589 |
+
|
590 |
+
def get_argument_names(cls):
|
591 |
+
sig = inspect.signature(cls.__init__)
|
592 |
+
return {
|
593 |
+
name
|
594 |
+
for name, param in sig.parameters.items()
|
595 |
+
if param.kind
|
596 |
+
in [inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY]
|
597 |
+
}
|
598 |
+
|
599 |
+
|
600 |
+
def instantiate_bnb_optimizer(optimizer, model_parameters):
|
601 |
+
if (isinstance(optimizer, str) and "AdamW" not in optimizer) or (
|
602 |
+
isinstance(optimizer, dict) and "AdamW" not in optimizer.get("class_path", "")
|
603 |
+
):
|
604 |
+
raise ValueError(
|
605 |
+
"The chosen quantization format only supports the AdamW optimizer."
|
606 |
+
)
|
607 |
+
|
608 |
+
import bitsandbytes as bnb
|
609 |
+
|
610 |
+
if isinstance(optimizer, str):
|
611 |
+
optimizer = bnb.optim.PagedAdamW(model_parameters)
|
612 |
+
else:
|
613 |
+
optim_args = get_argument_names(bnb.optim.PagedAdamW)
|
614 |
+
allowed_kwargs = {
|
615 |
+
key: optimizer["init_args"][key]
|
616 |
+
for key in optim_args & optimizer["init_args"].keys()
|
617 |
+
}
|
618 |
+
optimizer = bnb.optim.PagedAdamW(model_parameters, **allowed_kwargs)
|
619 |
+
return optimizer
|
620 |
+
|
621 |
+
|
622 |
+
def instantiate_torch_optimizer(optimizer, model_parameters, **kwargs):
|
623 |
+
if isinstance(optimizer, str):
|
624 |
+
optimizer_cls = getattr(torch.optim, optimizer)
|
625 |
+
optimizer = optimizer_cls(model_parameters, **kwargs)
|
626 |
+
else:
|
627 |
+
optimizer = dict(optimizer) # copy
|
628 |
+
optimizer["init_args"].update(kwargs)
|
629 |
+
optimizer = instantiate_class(model_parameters, optimizer)
|
630 |
+
return optimizer
|
631 |
+
|
632 |
+
|
633 |
+
def extend_checkpoint_dir(checkpoint_dir: Path) -> Path:
|
634 |
+
new_checkpoint_dir = "checkpoints" / checkpoint_dir
|
635 |
+
should_return_new_dir = (
|
636 |
+
not checkpoint_dir.is_dir()
|
637 |
+
and checkpoint_dir.parts[0] != "checkpoints"
|
638 |
+
and not checkpoint_dir.is_absolute()
|
639 |
+
and new_checkpoint_dir.exists()
|
640 |
+
)
|
641 |
+
return new_checkpoint_dir if should_return_new_dir else checkpoint_dir
|