Spaces:
Running
Running
File size: 2,182 Bytes
b5606e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_tools_agent, load_tools
from langchain_openai import ChatOpenAI
from gradio import ChatMessage
import gradio as gr
import os
if not (os.getenv("SERPAPI_API_KEY") and os.getenv("OPENAI_API_KEY")):
with gr.Blocks() as demo:
gr.Markdown("""
# Chat with a LangChain Agent π¦βοΈ and see its thoughts π
In order to run this space, duplicate it and add the following space secrets:
* SERPAPI_API_KEY - create an account at serpapi.com and get an API key
* OPENAI_API_KEY - create an openai account and get an API key
""")
model = ChatOpenAI(temperature=0, streaming=True)
tools = load_tools(["serpapi"])
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/openai-tools-agent")
# print(prompt.messages) -- to see the prompt
agent = create_openai_tools_agent(
model.with_config({"tags": ["agent_llm"]}), tools, prompt
)
agent_executor = AgentExecutor(agent=agent, tools=tools).with_config(
{"run_name": "Agent"}
)
async def interact_with_langchain_agent(prompt, messages):
messages.append(ChatMessage(role="user", content=prompt))
yield messages
async for chunk in agent_executor.astream(
{"input": prompt}
):
if "steps" in chunk:
for step in chunk["steps"]:
messages.append(ChatMessage(role="assistant", content=step.action.log,
metadata={"title": f"π οΈ Used tool {step.action.tool}"}))
yield messages
if "output" in chunk:
messages.append(ChatMessage(role="assistant", content=chunk["output"]))
yield messages
with gr.Blocks() as demo:
gr.Markdown("# Chat with a LangChain Agent π¦βοΈ and see its thoughts π")
chatbot_2 = gr.Chatbot(
msg_format="messages",
label="Agent",
avatar_images=(
None,
"https://em-content.zobj.net/source/twitter/141/parrot_1f99c.png",
),
)
input_2 = gr.Textbox(lines=1, label="Chat Message")
input_2.submit(interact_with_langchain_agent, [input_2, chatbot_2], [chatbot_2])
demo.launch() |