freddyaboulton's picture
Correct prompt padding side (#1)
bddd843 verified
raw
history blame
5.23 kB
import io
import math
from typing import Optional
import numpy as np
import spaces
import gradio as gr
import torch
from parler_tts import ParlerTTSForConditionalGeneration
from pydub import AudioSegment
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
from huggingface_hub import InferenceClient
import nltk
import random
nltk.download('punkt')
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
torch_dtype = torch.float16 if device != "cpu" else torch.float32
repo_id = "parler-tts/parler_tts_mini_v0.1"
jenny_repo_id = "ylacombe/parler-tts-mini-jenny-30H"
model = ParlerTTSForConditionalGeneration.from_pretrained(
jenny_repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
).to(device)
client = InferenceClient()
description_tokenizer = AutoTokenizer.from_pretrained(repo_id)
prompt_tokenizer = AutoTokenizer.from_pretrained(repo_id, padding_side="left")
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42
def numpy_to_mp3(audio_array, sampling_rate):
# Normalize audio_array if it's floating-point
if np.issubdtype(audio_array.dtype, np.floating):
max_val = np.max(np.abs(audio_array))
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range
audio_array = audio_array.astype(np.int16)
# Create an audio segment from the numpy array
audio_segment = AudioSegment(
audio_array.tobytes(),
frame_rate=sampling_rate,
sample_width=audio_array.dtype.itemsize,
channels=1
)
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
mp3_io = io.BytesIO()
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
# Get the MP3 bytes
mp3_bytes = mp3_io.getvalue()
mp3_io.close()
return mp3_bytes
sampling_rate = model.audio_encoder.config.sampling_rate
frame_rate = model.audio_encoder.config.frame_rate
@spaces.GPU
def generate_base(subject, setting):
messages = [{"role": "sytem", "content": ("You are an award-winning children's bedtime story author lauded for your inventive stories."
"You want to write a bed time story for your child. They will give you the subject and setting "
"and you will write the entire story. It should be targetted at children 5 and younger and take about "
"a minute to read")},
{"role": "user", "content": f"Please tell me a story about a {subject} in {setting}"}]
gr.Info("Generating story", duration=3)
response = client.chat_completion(messages, max_tokens=2048, seed=random.randint(1, 5000))
gr.Info("Story Generated", duration=3)
story = response.choices[0].message.content
model_input = story.replace("\n", " ").strip()
model_input_tokens = nltk.sent_tokenize(model_input)
play_steps_in_s = 4.0
play_steps = int(frame_rate * play_steps_in_s)
gr.Info("Generating Audio")
description = "Jenny speaks at an average pace with a calm delivery in a very confined sounding environment with clear audio quality."
story_tokens = prompt_tokenizer(model_input_tokens, return_tensors="pt", padding=True).input_ids.to(device)
description_tokens = description_tokenizer([description for _ in range(len(model_input_tokens))], return_tensors="pt").input_ids.to(device)
speech_output = model.generate(input_ids=description_tokens, prompt_input_ids=story_tokens)
speech_output = [output.cpu().numpy() for output in speech_output]
gr.Info("Generated Audio")
return None, None, {"audio": speech_output, "text": model_input_tokens}
import time
def stream_audio(state):
speech_output = state["audio"]
sentences = state["text"]
gr.Info("Reading Story")
story = ""
for sentence, new_audio in zip(sentences, speech_output):
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
story += f"{sentence}\n"
yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
time.sleep(5)
with gr.Blocks() as block:
gr.HTML(
f"""
<h1> Bedtime Story Reader ๐Ÿ˜ด๐Ÿ”Š </h1>
<p> Powered by <a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a>
"""
)
with gr.Group():
with gr.Row():
subject = gr.Dropdown(value="Princess", choices=["Prince", "Princess", "Dog", "Cat"])
setting = gr.Dropdown(value="Forest", choices=["Forest", "Kingdom", "Jungle", "Underwater"])
with gr.Row():
run_button = gr.Button("Generate Story", variant="primary")
with gr.Row():
with gr.Group():
audio_out = gr.Audio(label="Bed time story", streaming=True, autoplay=True)
story = gr.Textbox(label="Story")
inputs = [subject, setting]
outputs = [story, audio_out]
state = gr.State()
run_button.click(fn=generate_base, inputs=inputs, outputs=[story, audio_out, state]).success(stream_audio, inputs=state, outputs=outputs)
block.queue()
block.launch(share=True)