Spaces:
Sleeping
Sleeping
Shing Yee
commited on
Add application
Browse files- .gitattributes +1 -0
- .gitignore +160 -0
- app.py +55 -0
- models/cross-encoder-ms-marco-MiniLM-L-6-v2-CrossEncoder-OffTopic-Classifier-20240918-090615.safetensors +3 -0
- models/cross-encoder-stsb-roberta-base-CrossEncoder-OffTopic-Classifier-20240920-174009.safetensors +3 -0
- models/jinaai-jina-embeddings-v2-small-en-TwinEncoder-OffTopic-Classifier-20240915-151858.safetensors +3 -0
- requirements.txt +66 -0
- utils.py +202 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
models/*.safetensors filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from utils import (
|
4 |
+
device,
|
5 |
+
jina_tokenizer,
|
6 |
+
jina_model,
|
7 |
+
embeddings_predict_relevance,
|
8 |
+
stsb_model,
|
9 |
+
stsb_tokenizer,
|
10 |
+
ms_model,
|
11 |
+
ms_tokenizer,
|
12 |
+
cross_encoder_predict_relevance
|
13 |
+
)
|
14 |
+
|
15 |
+
def predict(system_prompt, user_prompt, selected_model):
|
16 |
+
if selected_model == "jinaai/jina-embeddings-v2-small-en":
|
17 |
+
predicted_label, probabilities = embeddings_predict_relevance(system_prompt, user_prompt, jina_model, jina_tokenizer, device)
|
18 |
+
elif selected_model == "cross-encoder/stsb-roberta-base":
|
19 |
+
predicted_label, probabilities = cross_encoder_predict_relevance(system_prompt, user_prompt, stsb_model, stsb_tokenizer, device)
|
20 |
+
elif selected_model == "cross-encoder/ms-marco-MiniLM-L-6-v2":
|
21 |
+
predicted_label, probabilities = cross_encoder_predict_relevance(system_prompt, user_prompt, ms_model, ms_tokenizer, device)
|
22 |
+
|
23 |
+
probability_off_topic = probabilities[0][1] * 100
|
24 |
+
result = f'{probability_off_topic:.3f}% chance this is off-topic'
|
25 |
+
|
26 |
+
return result
|
27 |
+
|
28 |
+
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as app:
|
29 |
+
|
30 |
+
gr.Markdown("# Off-Topic Classification using Fine-tuned Embeddings and Cross-Encoder Models")
|
31 |
+
|
32 |
+
with gr.Row():
|
33 |
+
system_prompt = gr.Textbox(label="System Prompt")
|
34 |
+
user_prompt = gr.Textbox(label="User Prompt")
|
35 |
+
|
36 |
+
with gr.Row():
|
37 |
+
selected_model = gr.Dropdown(
|
38 |
+
["jinaai/jina-embeddings-v2-small-en",
|
39 |
+
"cross-encoder/stsb-roberta-base",
|
40 |
+
"cross-encoder/ms-marco-MiniLM-L-6-v2"],
|
41 |
+
label="Select a model")
|
42 |
+
|
43 |
+
# Button to run the prediction
|
44 |
+
get_classfication = gr.Button("Check Content")
|
45 |
+
|
46 |
+
output_result = gr.Textbox(label="Classification and Probabilities", lines=5)
|
47 |
+
|
48 |
+
get_classfication.click(
|
49 |
+
fn=predict,
|
50 |
+
inputs=[system_prompt, user_prompt, selected_model],
|
51 |
+
outputs=output_result
|
52 |
+
)
|
53 |
+
|
54 |
+
if __name__ == "__main__":
|
55 |
+
app.launch()
|
models/cross-encoder-ms-marco-MiniLM-L-6-v2-CrossEncoder-OffTopic-Classifier-20240918-090615.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78a99fac3bc5b4729fee844d2154ea625aa9ceac2928cd648984ee1da5b8a203
|
3 |
+
size 91236352
|
models/cross-encoder-stsb-roberta-base-CrossEncoder-OffTopic-Classifier-20240920-174009.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e90752828e92bc2f8ec567b85b3de5a0c8c5ddc331c1907d4dfa950624f71ce
|
3 |
+
size 500085976
|
models/jinaai-jina-embeddings-v2-small-en-TwinEncoder-OffTopic-Classifier-20240915-151858.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:223687abc28cf0fa198d326d2786374000396d841e66d684c022941da2ca9628
|
3 |
+
size 144076480
|
requirements.txt
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
annotated-types==0.7.0
|
3 |
+
anyio==4.6.0
|
4 |
+
certifi==2024.8.30
|
5 |
+
charset-normalizer==3.3.2
|
6 |
+
click==8.1.7
|
7 |
+
contourpy==1.3.0
|
8 |
+
cycler==0.12.1
|
9 |
+
fastapi==0.115.0
|
10 |
+
ffmpy==0.4.0
|
11 |
+
filelock==3.16.1
|
12 |
+
fonttools==4.54.0
|
13 |
+
fsspec==2024.9.0
|
14 |
+
gradio==4.44.0
|
15 |
+
gradio_client==1.3.0
|
16 |
+
h11==0.14.0
|
17 |
+
httpcore==1.0.5
|
18 |
+
httpx==0.27.2
|
19 |
+
huggingface-hub==0.25.1
|
20 |
+
idna==3.10
|
21 |
+
importlib_resources==6.4.5
|
22 |
+
Jinja2==3.1.4
|
23 |
+
kiwisolver==1.4.7
|
24 |
+
markdown-it-py==3.0.0
|
25 |
+
MarkupSafe==2.1.5
|
26 |
+
matplotlib==3.9.2
|
27 |
+
mdurl==0.1.2
|
28 |
+
mpmath==1.3.0
|
29 |
+
networkx==3.3
|
30 |
+
numpy==2.1.1
|
31 |
+
orjson==3.10.7
|
32 |
+
packaging==24.1
|
33 |
+
pandas==2.2.3
|
34 |
+
pillow==10.4.0
|
35 |
+
pydantic==2.9.2
|
36 |
+
pydantic_core==2.23.4
|
37 |
+
pydub==0.25.1
|
38 |
+
Pygments==2.18.0
|
39 |
+
pyparsing==3.1.4
|
40 |
+
python-dateutil==2.9.0.post0
|
41 |
+
python-multipart==0.0.10
|
42 |
+
pytz==2024.2
|
43 |
+
PyYAML==6.0.2
|
44 |
+
regex==2024.9.11
|
45 |
+
requests==2.32.3
|
46 |
+
rich==13.8.1
|
47 |
+
ruff==0.6.7
|
48 |
+
safetensors==0.4.5
|
49 |
+
semantic-version==2.10.0
|
50 |
+
setuptools==75.1.0
|
51 |
+
shellingham==1.5.4
|
52 |
+
six==1.16.0
|
53 |
+
sniffio==1.3.1
|
54 |
+
starlette==0.38.6
|
55 |
+
sympy==1.13.3
|
56 |
+
tokenizers==0.19.1
|
57 |
+
tomlkit==0.12.0
|
58 |
+
torch==2.4.1
|
59 |
+
tqdm==4.66.5
|
60 |
+
transformers==4.44.2
|
61 |
+
typer==0.12.5
|
62 |
+
typing_extensions==4.12.2
|
63 |
+
tzdata==2024.2
|
64 |
+
urllib3==2.2.3
|
65 |
+
uvicorn==0.30.6
|
66 |
+
websockets==12.0
|
utils.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from safetensors.torch import load_file
|
4 |
+
from transformers import AutoModel, AutoTokenizer
|
5 |
+
|
6 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
7 |
+
|
8 |
+
# Load the model state_dict from safetensors
|
9 |
+
def load_model_safetensors(model, load_path="model.safetensors"):
|
10 |
+
# Load the safetensors file
|
11 |
+
state_dict = load_file(load_path)
|
12 |
+
# Load the state dict into the model
|
13 |
+
model.load_state_dict(state_dict)
|
14 |
+
return model
|
15 |
+
|
16 |
+
##########################
|
17 |
+
# JINA EMBEDDINGS
|
18 |
+
##########################
|
19 |
+
|
20 |
+
# Jina Configs
|
21 |
+
JINA_CONTEXT_LEN = 1024
|
22 |
+
|
23 |
+
# Adapter for embeddings
|
24 |
+
class Adapter(nn.Module):
|
25 |
+
def __init__(self, hidden_size):
|
26 |
+
super(Adapter, self).__init__()
|
27 |
+
self.down_project = nn.Linear(hidden_size, hidden_size // 2)
|
28 |
+
self.activation = nn.ReLU()
|
29 |
+
self.up_project = nn.Linear(hidden_size // 2, hidden_size)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
down = self.down_project(x)
|
33 |
+
activated = self.activation(down)
|
34 |
+
up = self.up_project(activated)
|
35 |
+
return up + x # Residual connection
|
36 |
+
|
37 |
+
# Pool by attention score
|
38 |
+
class AttentionPooling(nn.Module):
|
39 |
+
def __init__(self, hidden_size):
|
40 |
+
super(AttentionPooling, self).__init__()
|
41 |
+
self.attention_weights = nn.Parameter(torch.randn(hidden_size))
|
42 |
+
|
43 |
+
def forward(self, hidden_states):
|
44 |
+
# hidden_states: [seq_len, batch_size, hidden_size]
|
45 |
+
scores = torch.matmul(hidden_states, self.attention_weights)
|
46 |
+
attention_weights = torch.softmax(scores, dim=0)
|
47 |
+
weighted_sum = torch.sum(attention_weights.unsqueeze(-1) * hidden_states, dim=0)
|
48 |
+
return weighted_sum
|
49 |
+
|
50 |
+
# Custom bi-encoder model with MLP layers for interaction
|
51 |
+
class CrossEncoderWithSharedBase(nn.Module):
|
52 |
+
def __init__(self, base_model, num_labels=2, num_heads=8):
|
53 |
+
super(CrossEncoderWithSharedBase, self).__init__()
|
54 |
+
# Shared pre-trained model
|
55 |
+
self.shared_encoder = base_model
|
56 |
+
hidden_size = self.shared_encoder.config.hidden_size
|
57 |
+
# Sentence-specific adapters
|
58 |
+
self.adapter1 = Adapter(hidden_size)
|
59 |
+
self.adapter2 = Adapter(hidden_size)
|
60 |
+
# Cross-attention layers
|
61 |
+
self.cross_attention_1_to_2 = nn.MultiheadAttention(hidden_size, num_heads)
|
62 |
+
self.cross_attention_2_to_1 = nn.MultiheadAttention(hidden_size, num_heads)
|
63 |
+
# Attention pooling layers
|
64 |
+
self.attn_pooling_1_to_2 = AttentionPooling(hidden_size)
|
65 |
+
self.attn_pooling_2_to_1 = AttentionPooling(hidden_size)
|
66 |
+
# Projection layer with non-linearity
|
67 |
+
self.projection_layer = nn.Sequential(
|
68 |
+
nn.Linear(hidden_size * 2, hidden_size),
|
69 |
+
nn.ReLU()
|
70 |
+
)
|
71 |
+
# Classifier with three hidden layers
|
72 |
+
self.classifier = nn.Sequential(
|
73 |
+
nn.Linear(hidden_size, hidden_size // 2),
|
74 |
+
nn.ReLU(),
|
75 |
+
nn.Dropout(0.1),
|
76 |
+
nn.Linear(hidden_size // 2, hidden_size // 4),
|
77 |
+
nn.ReLU(),
|
78 |
+
nn.Dropout(0.1),
|
79 |
+
nn.Linear(hidden_size // 4, num_labels)
|
80 |
+
)
|
81 |
+
def forward(self, input_ids1, attention_mask1, input_ids2, attention_mask2):
|
82 |
+
# Encode sentences
|
83 |
+
outputs1 = self.shared_encoder(input_ids1, attention_mask=attention_mask1)
|
84 |
+
outputs2 = self.shared_encoder(input_ids2, attention_mask=attention_mask2)
|
85 |
+
# Apply sentence-specific adapters
|
86 |
+
embeds1 = self.adapter1(outputs1.last_hidden_state)
|
87 |
+
embeds2 = self.adapter2(outputs2.last_hidden_state)
|
88 |
+
# Transpose for attention layers
|
89 |
+
embeds1 = embeds1.transpose(0, 1)
|
90 |
+
embeds2 = embeds2.transpose(0, 1)
|
91 |
+
# Cross-attention
|
92 |
+
cross_attn_1_to_2, _ = self.cross_attention_1_to_2(embeds1, embeds2, embeds2)
|
93 |
+
cross_attn_2_to_1, _ = self.cross_attention_2_to_1(embeds2, embeds1, embeds1)
|
94 |
+
# Attention pooling
|
95 |
+
pooled_1_to_2 = self.attn_pooling_1_to_2(cross_attn_1_to_2)
|
96 |
+
pooled_2_to_1 = self.attn_pooling_2_to_1(cross_attn_2_to_1)
|
97 |
+
# Concatenate and project
|
98 |
+
combined = torch.cat((pooled_1_to_2, pooled_2_to_1), dim=1)
|
99 |
+
projected = self.projection_layer(combined)
|
100 |
+
# Classification
|
101 |
+
logits = self.classifier(projected)
|
102 |
+
return logits
|
103 |
+
|
104 |
+
# Prediction function
|
105 |
+
def embeddings_predict_relevance(sentence1, sentence2, model, tokenizer, device):
|
106 |
+
model.eval()
|
107 |
+
inputs1 = tokenizer(sentence1, return_tensors="pt", truncation=True, padding="max_length", max_length=1024)
|
108 |
+
inputs2 = tokenizer(sentence2, return_tensors="pt", truncation=True, padding="max_length", max_length=1024)
|
109 |
+
input_ids1 = inputs1['input_ids'].to(device)
|
110 |
+
attention_mask1 = inputs1['attention_mask'].to(device)
|
111 |
+
input_ids2 = inputs2['input_ids'].to(device)
|
112 |
+
attention_mask2 = inputs2['attention_mask'].to(device)
|
113 |
+
with torch.no_grad():
|
114 |
+
outputs = model(input_ids1=input_ids1, attention_mask1=attention_mask1,
|
115 |
+
input_ids2=input_ids2, attention_mask2=attention_mask2)
|
116 |
+
probabilities = torch.softmax(outputs, dim=1)
|
117 |
+
predicted_label = torch.argmax(probabilities, dim=1).item()
|
118 |
+
return predicted_label, probabilities.cpu().numpy()
|
119 |
+
|
120 |
+
# Jina model
|
121 |
+
JINA_MODEL_NAME = "jinaai/jina-embeddings-v2-small-en"
|
122 |
+
jina_tokenizer = AutoTokenizer.from_pretrained(JINA_MODEL_NAME)
|
123 |
+
jina_base_model = AutoModel.from_pretrained(JINA_MODEL_NAME)
|
124 |
+
jina_model = CrossEncoderWithSharedBase(jina_base_model, num_labels=2)
|
125 |
+
jina_model = load_model_safetensors(jina_model, load_path="models/jinaai-jina-embeddings-v2-small-en-TwinEncoder-OffTopic-Classifier-20240915-151858.safetensors")
|
126 |
+
|
127 |
+
##########################
|
128 |
+
# CROSS-ENCODER
|
129 |
+
##########################
|
130 |
+
|
131 |
+
# STSB Configs
|
132 |
+
STSB_CONTEXT_LEN = 512
|
133 |
+
|
134 |
+
# ms-macro Configs
|
135 |
+
MS_CONTEXT_LEN = 512
|
136 |
+
|
137 |
+
class CrossEncoderWithMLP(nn.Module):
|
138 |
+
def __init__(self, base_model, num_labels=2):
|
139 |
+
super(CrossEncoderWithMLP, self).__init__()
|
140 |
+
|
141 |
+
# Existing cross-encoder model
|
142 |
+
self.base_model = base_model
|
143 |
+
# Hidden size of the base model
|
144 |
+
hidden_size = base_model.config.hidden_size
|
145 |
+
# MLP layers after combining the cross-encoders
|
146 |
+
self.mlp = nn.Sequential(
|
147 |
+
nn.Linear(hidden_size, hidden_size // 2), # Input: a single sentence
|
148 |
+
nn.ReLU(),
|
149 |
+
nn.Linear(hidden_size // 2, hidden_size // 4), # Reduce the size of the layer
|
150 |
+
nn.ReLU()
|
151 |
+
)
|
152 |
+
# Classifier head
|
153 |
+
self.classifier = nn.Linear(hidden_size // 4, num_labels)
|
154 |
+
|
155 |
+
def forward(self, input_ids, attention_mask):
|
156 |
+
# Encode the pair of sentences in one pass
|
157 |
+
outputs = self.base_model(input_ids, attention_mask)
|
158 |
+
pooled_output = outputs.pooler_output
|
159 |
+
# Pass the pooled output through mlp layers
|
160 |
+
mlp_output = self.mlp(pooled_output)
|
161 |
+
# Pass the final MLP output through the classifier
|
162 |
+
logits = self.classifier(mlp_output)
|
163 |
+
return logits
|
164 |
+
|
165 |
+
def cross_encoder_predict_relevance(sentence1, sentence2, model, tokenizer, device):
|
166 |
+
model.eval()
|
167 |
+
# Tokenize the pair of sentences
|
168 |
+
encoding = tokenizer(
|
169 |
+
sentence1, sentence2, # Takes in a two sentences as a pair
|
170 |
+
return_tensors="pt",
|
171 |
+
truncation=True,
|
172 |
+
padding="max_length",
|
173 |
+
max_length=512,
|
174 |
+
return_token_type_ids=False
|
175 |
+
)
|
176 |
+
# Extract the input_ids and attention mask
|
177 |
+
input_ids = encoding["input_ids"].to(device)
|
178 |
+
attention_mask = encoding["attention_mask"].to(device)
|
179 |
+
|
180 |
+
with torch.no_grad():
|
181 |
+
outputs = model(
|
182 |
+
input_ids=input_ids,
|
183 |
+
attention_mask=attention_mask
|
184 |
+
) # Returns logits
|
185 |
+
# Convert raw logits into probabilities for each class and get the predicted label
|
186 |
+
probabilities = torch.softmax(outputs, dim=1)
|
187 |
+
predicted_label = torch.argmax(probabilities, dim=1).item()
|
188 |
+
return predicted_label, probabilities.cpu().numpy()
|
189 |
+
|
190 |
+
# STSB model
|
191 |
+
STSB_MODEL_NAME = "cross-encoder/stsb-roberta-base"
|
192 |
+
stsb_tokenizer = AutoTokenizer.from_pretrained(STSB_MODEL_NAME)
|
193 |
+
stsb_base_model = AutoModel.from_pretrained(STSB_MODEL_NAME)
|
194 |
+
stsb_model = CrossEncoderWithMLP(stsb_base_model, num_labels=2)
|
195 |
+
stsb_model = load_model_safetensors(stsb_model, load_path="models/cross-encoder-stsb-roberta-base-CrossEncoder-OffTopic-Classifier-20240920-174009.safetensors")
|
196 |
+
|
197 |
+
# MS model
|
198 |
+
MS_MODEL_NAME = "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
199 |
+
ms_tokenizer = AutoTokenizer.from_pretrained(MS_MODEL_NAME)
|
200 |
+
ms_base_model = AutoModel.from_pretrained(MS_MODEL_NAME)
|
201 |
+
ms_model = CrossEncoderWithMLP(ms_base_model, num_labels=2)
|
202 |
+
ms_model = load_model_safetensors(ms_model, load_path="models/cross-encoder-ms-marco-MiniLM-L-6-v2-CrossEncoder-OffTopic-Classifier-20240918-090615.safetensors")
|