Spaces:
Runtime error
Runtime error
gorkaartola
commited on
Commit
·
b751253
1
Parent(s):
b17ddff
Upload metric_for_tp_fp_samples.py
Browse files- metric_for_tp_fp_samples.py +238 -0
metric_for_tp_fp_samples.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""TODO: Add a description here."""
|
15 |
+
|
16 |
+
import evaluate
|
17 |
+
import datasets
|
18 |
+
import pandas as pd
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
|
22 |
+
# TODO: Add BibTeX citation
|
23 |
+
_CITATION = """\
|
24 |
+
@InProceedings{huggingface:module,
|
25 |
+
title = {A great new module},
|
26 |
+
authors={huggingface, Inc.},
|
27 |
+
year={2020}
|
28 |
+
}
|
29 |
+
"""
|
30 |
+
|
31 |
+
# TODO: Add description of the module here
|
32 |
+
_DESCRIPTION = """\
|
33 |
+
This new module is designed to solve this great ML task and is crafted with a lot of care.
|
34 |
+
"""
|
35 |
+
|
36 |
+
|
37 |
+
# TODO: Add description of the arguments of the module here
|
38 |
+
_KWARGS_DESCRIPTION = """
|
39 |
+
Calculates how good are predictions given some references, using certain scores
|
40 |
+
Args:
|
41 |
+
predictions: list of predictions to score. Each predictions
|
42 |
+
should be a string with tokens separated by spaces.
|
43 |
+
references: list of reference for each prediction. Each
|
44 |
+
reference should be a string with tokens separated by spaces.
|
45 |
+
Returns:
|
46 |
+
accuracy: description of the first score,
|
47 |
+
another_score: description of the second score,
|
48 |
+
Examples:
|
49 |
+
Examples should be written in doctest format, and should illustrate how
|
50 |
+
to use the function.
|
51 |
+
|
52 |
+
>>> my_new_module = evaluate.load("my_new_module")
|
53 |
+
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
54 |
+
>>> print(results)
|
55 |
+
{'accuracy': 1.0}
|
56 |
+
"""
|
57 |
+
|
58 |
+
# TODO: Define external resources urls if needed
|
59 |
+
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
60 |
+
|
61 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
62 |
+
class metric_tp_fp_Datasets(evaluate.Metric):
|
63 |
+
"""TODO: Short description of my metric."""
|
64 |
+
def _info(self):
|
65 |
+
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
66 |
+
return evaluate.MetricInfo(
|
67 |
+
# This is the description that will appear on the metrics page.
|
68 |
+
module_type="metric",
|
69 |
+
description=_DESCRIPTION,
|
70 |
+
citation=_CITATION,
|
71 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
+
# This defines the format of each prediction and reference
|
73 |
+
features=datasets.Features({
|
74 |
+
'predictions': datasets.features.Sequence(datasets.Value('float32')),
|
75 |
+
'references': datasets.features.Sequence(datasets.Value('int32')),
|
76 |
+
}),
|
77 |
+
# Homepage of the metric for documentation
|
78 |
+
homepage="http://module.homepage",
|
79 |
+
# Additional links to the codebase or references
|
80 |
+
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
+
reference_urls=["http://path.to.reference.url/new_module"]
|
82 |
+
)
|
83 |
+
|
84 |
+
def _download_and_prepare(self, dl_manager):
|
85 |
+
"""Optional: download external resources useful to compute the scores"""
|
86 |
+
# TODO: Download external resources if needed
|
87 |
+
pass
|
88 |
+
|
89 |
+
#Prediction strategy function selector########################################
|
90 |
+
def predict(self, logits, prediction_strategy):
|
91 |
+
if prediction_strategy[0] == "argmax_max":
|
92 |
+
results = self.argmax_max(logits)
|
93 |
+
elif prediction_strategy[0] == "softmax_threshold":
|
94 |
+
results = self.softmax_threshold(logits, prediction_strategy[1])
|
95 |
+
elif prediction_strategy[0] == "softmax_topk":
|
96 |
+
results = self.softmax_topk(logits, prediction_strategy[1])
|
97 |
+
elif prediction_strategy[0] == "threshold":
|
98 |
+
results = self.threshold(logits, prediction_strategy[1])
|
99 |
+
elif prediction_strategy[0] == "topk":
|
100 |
+
results = self.topk(logits, prediction_strategy[1])
|
101 |
+
return results
|
102 |
+
#Prediction strategy functions______________________________________________
|
103 |
+
def argmax_max(self, logits):
|
104 |
+
predictions = []
|
105 |
+
argmax = torch.argmax(logits, dim=-1)
|
106 |
+
for prediction in argmax:
|
107 |
+
predicted_indexes = [prediction.item()]
|
108 |
+
predictions.append(predicted_indexes)
|
109 |
+
return predictions
|
110 |
+
def softmax_threshold(logits, threshold):
|
111 |
+
predictions = []
|
112 |
+
softmax = torch.softmax(logits, dim=-1)
|
113 |
+
for prediction in softmax:
|
114 |
+
predicted_indexes =[]
|
115 |
+
for index, value in enumerate(prediction):
|
116 |
+
if value >= threshold:
|
117 |
+
predicted_indexes.append(index)
|
118 |
+
predictions.append(predicted_indexes)
|
119 |
+
return predictions
|
120 |
+
def softmax_topk(self, logits, topk):
|
121 |
+
softmax = torch.softmax(logits, dim=-1)
|
122 |
+
predictions = softmax.topk(topk).indices.tolist()
|
123 |
+
return predictions
|
124 |
+
def threshold(self, logits, threshold):
|
125 |
+
predictions = []
|
126 |
+
for prediction in logits:
|
127 |
+
predicted_indexes =[]
|
128 |
+
for index, value in enumerate(prediction):
|
129 |
+
if value >= threshold:
|
130 |
+
predicted_indexes.append(index)
|
131 |
+
predictions.append(predicted_indexes)
|
132 |
+
return predictions
|
133 |
+
def topk(self, logits, topk):
|
134 |
+
predictions = logits.topk(topk).indices.tolist()
|
135 |
+
return predictions
|
136 |
+
|
137 |
+
#Builds a report with the metrics####################################################
|
138 |
+
def metrics_report(self, true_positives = "", false_positives = ""):
|
139 |
+
classes = true_positives.loc[true_positives["class"] != 'total']["class"].tolist()
|
140 |
+
samples = [0 for i in range(len(classes))]
|
141 |
+
results = pd.DataFrame({
|
142 |
+
"class": classes,
|
143 |
+
"N# of True samples": samples,
|
144 |
+
"N# of False samples": samples,
|
145 |
+
"True Positives": samples,
|
146 |
+
"False Positives": samples,
|
147 |
+
"r": samples,
|
148 |
+
"p": samples,
|
149 |
+
"f1": samples,
|
150 |
+
"acc": samples,
|
151 |
+
})
|
152 |
+
results.loc[len(results.index)] = ["total", 0, 0, 0, 0, 0, 0, 0, 0]
|
153 |
+
|
154 |
+
for label in results["class"].tolist():
|
155 |
+
if label in true_positives["class"].tolist():
|
156 |
+
label_true_samples = true_positives.loc[true_positives["class"] == label, "number of samples"].iloc[0]
|
157 |
+
label_true_positives = true_positives.loc[true_positives["class"] == label, "coincidence count"].iloc[0]
|
158 |
+
else:
|
159 |
+
label_true_samples = 0
|
160 |
+
label_true_positives = 0
|
161 |
+
if label in false_positives["class"].tolist():
|
162 |
+
label_false_samples = false_positives.loc[false_positives["class"] == label, "number of samples"].iloc[0]
|
163 |
+
label_false_positives = false_positives.loc[false_positives["class"] == label, "coincidence count"].iloc[0]
|
164 |
+
else:
|
165 |
+
label_false_samples = 0
|
166 |
+
label_false_positives = 0
|
167 |
+
|
168 |
+
r = label_true_positives/label_true_samples
|
169 |
+
p = label_true_positives/(label_true_positives+label_false_positives)
|
170 |
+
f1 = 2*r*p/(r+p)
|
171 |
+
acc = (label_true_positives+(label_false_samples-label_false_positives))/(label_true_samples+label_false_samples)
|
172 |
+
|
173 |
+
results.loc[results["class"] == label, "N# of True samples"] = label_true_samples
|
174 |
+
results.loc[results["class"] == label, "N# of False samples"] = label_false_samples
|
175 |
+
results.loc[results["class"] == label, "True Positives"] = label_true_positives
|
176 |
+
results.loc[results["class"] == label, "False Positives"] = label_false_positives
|
177 |
+
if label != "total":
|
178 |
+
results.loc[results["class"] == label, "r"] = r
|
179 |
+
results.loc[results["class"] == label, "p"] = p
|
180 |
+
results.loc[results["class"] == label, "f1"] = f1
|
181 |
+
results.loc[results["class"] == label, "acc"] = acc
|
182 |
+
else:
|
183 |
+
results.loc[results["class"] == label, "r"] = ""
|
184 |
+
results.loc[results["class"] == label, "p"] = ""
|
185 |
+
results.loc[results["class"] == label, "f1"] = ""
|
186 |
+
results.loc[results["class"] == label, "acc"] = ""
|
187 |
+
results.loc[len(results.index)] = ["", "", "", "", "Micro avg.", r , p, f1, acc]
|
188 |
+
results = results.fillna(0.0)
|
189 |
+
final_values = results.loc[:len(results.index)-3]
|
190 |
+
results.loc[len(results.index)] = ["", "", "", "", "Macro avg.", final_values["r"].mean(), final_values["p"].mean(), final_values["f1"].mean(), final_values["acc"].mean()]
|
191 |
+
return results
|
192 |
+
|
193 |
+
#Computes the metric for each prediction strategy##############################################
|
194 |
+
def _compute(self, predictions, references, prediction_strategies = []):
|
195 |
+
"""Returns the scores"""
|
196 |
+
# TODO: Compute the different scores of the metric
|
197 |
+
predictions = torch.from_numpy(np.array(predictions, dtype = 'float32'))
|
198 |
+
classes = []
|
199 |
+
for value in references:
|
200 |
+
if value[0] not in classes:
|
201 |
+
classes.append(value[0])
|
202 |
+
results = {}
|
203 |
+
for prediction_strategy in prediction_strategies:
|
204 |
+
prediction_strategy_name = '-'.join(map(str, prediction_strategy))
|
205 |
+
results[prediction_strategy_name] = {}
|
206 |
+
predicted_labels = self.predict(predictions, prediction_strategy)
|
207 |
+
samples = [0 for i in range(len(classes))]
|
208 |
+
TP_data = pd.DataFrame({
|
209 |
+
"class": classes,
|
210 |
+
"number of samples": samples,
|
211 |
+
"coincidence count": samples,
|
212 |
+
})
|
213 |
+
FP_data = pd.DataFrame({
|
214 |
+
"class": classes,
|
215 |
+
"number of samples": samples,
|
216 |
+
"coincidence count": samples,
|
217 |
+
})
|
218 |
+
for i, j in zip(predicted_labels, references):
|
219 |
+
if j[1] == 0:
|
220 |
+
TP_data.loc[TP_data["class"] == j[0], "number of samples"] += 1
|
221 |
+
if len(i) >> 0:
|
222 |
+
if j[0] in i:
|
223 |
+
TP_data.loc[TP_data["class"] == j[0], "coincidence count"] += 1
|
224 |
+
TP_data = TP_data.sort_values(by=["class"], ignore_index = True)
|
225 |
+
if j[1] == 2:
|
226 |
+
FP_data.loc[FP_data["class"] == j[0], "number of samples"] += 1
|
227 |
+
if len(i) >> 0:
|
228 |
+
if j[0] in i:
|
229 |
+
FP_data.loc[FP_data["class"] == j[0], "coincidence count"] += 1
|
230 |
+
FP_data = FP_data.sort_values(by=["class"], ignore_index = True)
|
231 |
+
TP_data.loc[len(TP_data.index)] =["total", TP_data["number of samples"].sum(), TP_data["coincidence count"].sum()]
|
232 |
+
FP_data.loc[len(FP_data.index)] =["total", FP_data["number of samples"].sum(), FP_data["coincidence count"].sum()]
|
233 |
+
report_table = self.metrics_report(
|
234 |
+
true_positives = TP_data,
|
235 |
+
false_positives = FP_data
|
236 |
+
)
|
237 |
+
results[prediction_strategy_name] = report_table.rename_axis(prediction_strategy_name, axis='columns')
|
238 |
+
return results
|