# Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr # Load DialoGPT model and tokenizer tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare the context from history chat_history = "" for user_input, bot_response in history: if user_input: chat_history += f"User: {user_input}\n" if bot_response: chat_history += f"Bot: {bot_response}\n" # Append the new user message chat_history += f"User: {message}\n" # Tokenize the input input_ids = tokenizer.encode(chat_history, return_tensors="pt") # Generate response output_ids = model.generate( input_ids, max_length=max_tokens + len(input_ids[0]), temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, ) # Decode the output and get the response output = tokenizer.decode(output_ids[0], skip_special_tokens=True) # Extract the bot's response bot_response = output.split("User:")[-1].split("Bot:")[-1].strip() history.append((message, bot_response)) # Update history yield bot_response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()