Spaces:
Sleeping
Sleeping
# Load model directly | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
# Load DialoGPT model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Prepare the context from history | |
chat_history = "" | |
for user_input, bot_response in history: | |
if user_input: | |
chat_history += f"User: {user_input}\n" | |
if bot_response: | |
chat_history += f"Bot: {bot_response}\n" | |
# Append the new user message | |
chat_history += f"User: {message}\n" | |
# Tokenize the input | |
input_ids = tokenizer.encode(chat_history, return_tensors="pt") | |
# Generate response | |
output_ids = model.generate( | |
input_ids, | |
max_length=max_tokens + len(input_ids[0]), | |
temperature=temperature, | |
top_p=top_p, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
# Decode the output and get the response | |
output = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
# Extract the bot's response | |
bot_response = output.split("User:")[-1].split("Bot:")[-1].strip() | |
history.append((message, bot_response)) # Update history | |
yield bot_response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |