File size: 9,751 Bytes
e7f2f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699e53a
6dd314c
699e53a
e7f2f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
from importlib.metadata import version
from inspect import currentframe, getframeinfo
from pathlib import Path

from decouple import config
from theflow.settings.default import *  # noqa

cur_frame = currentframe()
if cur_frame is None:
    raise ValueError("Cannot get the current frame.")
this_file = getframeinfo(cur_frame).filename
this_dir = Path(this_file).parent

# change this if your app use a different name
KH_PACKAGE_NAME = "kotaemon_app"

KH_APP_VERSION = config("KH_APP_VERSION", None)
if not KH_APP_VERSION:
    try:
        # Caution: This might produce the wrong version
        # https://stackoverflow.com/a/59533071
        KH_APP_VERSION = version(KH_PACKAGE_NAME)
    except Exception:
        KH_APP_VERSION = "local"

KH_ENABLE_FIRST_SETUP = True
KH_DEMO_MODE = config("KH_DEMO_MODE", default=False, cast=bool)

# App can be ran from anywhere and it's not trivial to decide where to store app data.
# So let's use the same directory as the flowsetting.py file.
KH_APP_DATA_DIR = this_dir / "ktem_app_data"
KH_APP_DATA_EXISTS = KH_APP_DATA_DIR.exists()
KH_APP_DATA_DIR.mkdir(parents=True, exist_ok=True)

# User data directory
KH_USER_DATA_DIR = KH_APP_DATA_DIR / "user_data"
KH_USER_DATA_DIR.mkdir(parents=True, exist_ok=True)

# markdown output directory
KH_MARKDOWN_OUTPUT_DIR = KH_APP_DATA_DIR / "markdown_cache_dir"
KH_MARKDOWN_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)

# chunks output directory
KH_CHUNKS_OUTPUT_DIR = KH_APP_DATA_DIR / "chunks_cache_dir"
KH_CHUNKS_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)

# zip output directory
KH_ZIP_OUTPUT_DIR = KH_APP_DATA_DIR / "zip_cache_dir"
KH_ZIP_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)

# zip input directory
KH_ZIP_INPUT_DIR = KH_APP_DATA_DIR / "zip_cache_dir_in"
KH_ZIP_INPUT_DIR.mkdir(parents=True, exist_ok=True)

# HF models can be big, let's store them in the app data directory so that it's easier
# for users to manage their storage.
# ref: https://huggingface.co/docs/huggingface_hub/en/guides/manage-cache
os.environ["HF_HOME"] = str(KH_APP_DATA_DIR / "huggingface")
os.environ["HF_HUB_CACHE"] = str(KH_APP_DATA_DIR / "huggingface")

# doc directory
KH_DOC_DIR = this_dir / "docs"

KH_MODE = "dev"
KH_FEATURE_USER_MANAGEMENT = False
KH_USER_CAN_SEE_PUBLIC = None
KH_FEATURE_USER_MANAGEMENT_ADMIN = str(
    config("KH_FEATURE_USER_MANAGEMENT_ADMIN", default="admin")
)
KH_FEATURE_USER_MANAGEMENT_PASSWORD = str(
    config("KH_FEATURE_USER_MANAGEMENT_PASSWORD", default="admin")
)
KH_ENABLE_ALEMBIC = False
KH_DATABASE = f"sqlite:///{KH_USER_DATA_DIR / 'sql.db'}"
KH_FILESTORAGE_PATH = str(KH_USER_DATA_DIR / "files")

KH_DOCSTORE = {
    # "__type__": "kotaemon.storages.ElasticsearchDocumentStore",
    # "__type__": "kotaemon.storages.SimpleFileDocumentStore",
    "__type__": "kotaemon.storages.LanceDBDocumentStore",
    "path": str(KH_USER_DATA_DIR / "docstore"),
}
KH_VECTORSTORE = {
    # "__type__": "kotaemon.storages.LanceDBVectorStore",
    "__type__": "kotaemon.storages.ChromaVectorStore",
    # "__type__": "kotaemon.storages.MilvusVectorStore",
    # "__type__": "kotaemon.storages.QdrantVectorStore",
    "path": str(KH_USER_DATA_DIR / "vectorstore"),
}
KH_LLMS = {}
KH_EMBEDDINGS = {}

# populate options from config
if config("AZURE_OPENAI_API_KEY", default="") and config(
    "AZURE_OPENAI_ENDPOINT", default=""
):
    if config("AZURE_OPENAI_CHAT_DEPLOYMENT", default=""):
        KH_LLMS["azure"] = {
            "spec": {
                "__type__": "kotaemon.llms.AzureChatOpenAI",
                "temperature": 0,
                "azure_endpoint": config("AZURE_OPENAI_ENDPOINT", default=""),
                "api_key": config("AZURE_OPENAI_API_KEY", default=""),
                "api_version": config("OPENAI_API_VERSION", default="")
                or "2024-02-15-preview",
                "azure_deployment": config("AZURE_OPENAI_CHAT_DEPLOYMENT", default=""),
                "timeout": 20,
            },
            "default": False,
        }
    if config("AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT", default=""):
        KH_EMBEDDINGS["azure"] = {
            "spec": {
                "__type__": "kotaemon.embeddings.AzureOpenAIEmbeddings",
                "azure_endpoint": config("AZURE_OPENAI_ENDPOINT", default=""),
                "api_key": config("AZURE_OPENAI_API_KEY", default=""),
                "api_version": config("OPENAI_API_VERSION", default="")
                or "2024-02-15-preview",
                "azure_deployment": config(
                    "AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT", default=""
                ),
                "timeout": 10,
            },
            "default": False,
        }

if config("OPENAI_API_KEY", default=""):
    KH_LLMS["openai"] = {
        "spec": {
            "__type__": "kotaemon.llms.ChatOpenAI",
            "temperature": 0,
            "base_url": config("OPENAI_API_BASE", default="")
            or "https://api.openai.com/v1",
            "api_key": config("OPENAI_API_KEY", default=""),
            "model": config("OPENAI_CHAT_MODEL", default="gpt-3.5-turbo"),
            "timeout": 20,
        },
        "default": True,
    }
    KH_EMBEDDINGS["openai"] = {
        "spec": {
            "__type__": "kotaemon.embeddings.OpenAIEmbeddings",
            "base_url": config("OPENAI_API_BASE", default="https://api.openai.com/v1"),
            "api_key": config("OPENAI_API_KEY", default=""),
            "model": config(
                "OPENAI_EMBEDDINGS_MODEL", default="text-embedding-ada-002"
            ),
            "timeout": 10,
            "context_length": 8191,
        },
        "default": True,
    }

if config("LOCAL_MODEL", default=""):
    KH_LLMS["ollama"] = {
        "spec": {
            "__type__": "kotaemon.llms.ChatOpenAI",
            "base_url": "http://localhost:11434/v1/",
            "model": config("LOCAL_MODEL", default="llama3.1:8b"),
            "api_key": "ollama",
        },
        "default": False,
    }
    KH_EMBEDDINGS["ollama"] = {
        "spec": {
            "__type__": "kotaemon.embeddings.OpenAIEmbeddings",
            "base_url": "http://localhost:11434/v1/",
            "model": config("LOCAL_MODEL_EMBEDDINGS", default="nomic-embed-text"),
            "api_key": "ollama",
        },
        "default": False,
    }

    KH_EMBEDDINGS["fast_embed"] = {
        "spec": {
            "__type__": "kotaemon.embeddings.FastEmbedEmbeddings",
            "model_name": "BAAI/bge-base-en-v1.5",
        },
        "default": False,
    }

# additional LLM configurations
KH_LLMS["claude"] = {
    "spec": {
        "__type__": "kotaemon.llms.chats.LCAnthropicChat",
        "model_name": "claude-3-5-sonnet-20240620",
        "api_key": "your-key",
    },
    "default": False,
}
# KH_LLMS["gemini"] = {
#     "spec": {
#         "__type__": "kotaemon.llms.chats.LCGeminiChat",
#         "model_name": "gemini-1.5-pro",
#         "api_key": "your-key",
#     },
#     "default": False,
# }
KH_LLMS["groq"] = {
    "spec": {
        "__type__": "kotaemon.llms.ChatOpenAI",
        "base_url": "https://api.groq.com/openai/v1",
        "model": "llama-3.1-8b-instant",
        "api_key": "your-key",
    },
    "default": False,
}
KH_LLMS["cohere"] = {
    "spec": {
        "__type__": "kotaemon.llms.chats.LCCohereChat",
        "model_name": "command-r-plus-08-2024",
        "api_key": "your-key",
    },
    "default": False,
}

# additional embeddings configurations
KH_EMBEDDINGS["cohere"] = {
    "spec": {
        "__type__": "kotaemon.embeddings.LCCohereEmbeddings",
        "model": "embed-multilingual-v2.0",
        "cohere_api_key": "your-key",
        "user_agent": "default",
    },
    "default": False,
}
# KH_EMBEDDINGS["huggingface"] = {
#     "spec": {
#         "__type__": "kotaemon.embeddings.LCHuggingFaceEmbeddings",
#         "model_name": "sentence-transformers/all-mpnet-base-v2",
#     },
#     "default": False,
# }

KH_REASONINGS = [
    "ktem.reasoning.simple.FullQAPipeline",
    "ktem.reasoning.simple.FullDecomposeQAPipeline",
    "ktem.reasoning.react.ReactAgentPipeline",
    "ktem.reasoning.rewoo.RewooAgentPipeline",
]
KH_REASONINGS_USE_MULTIMODAL = False
KH_VLM_ENDPOINT = "{0}/openai/deployments/{1}/chat/completions?api-version={2}".format(
    config("AZURE_OPENAI_ENDPOINT", default=""),
    config("OPENAI_VISION_DEPLOYMENT_NAME", default="gpt-4o"),
    config("OPENAI_API_VERSION", default=""),
)


SETTINGS_APP: dict[str, dict] = {}


SETTINGS_REASONING = {
    "use": {
        "name": "Reasoning options",
        "value": None,
        "choices": [],
        "component": "radio",
    },
    "lang": {
        "name": "Language",
        "value": "en",
        "choices": [("English", "en"), ("Japanese", "ja"), ("Vietnamese", "vi")],
        "component": "dropdown",
    },
    "max_context_length": {
        "name": "Max context length (LLM)",
        "value": 32000,
        "component": "number",
    },
}


KH_INDEX_TYPES = [
    "ktem.index.file.FileIndex",
    "ktem.index.file.graph.GraphRAGIndex",
]
KH_INDICES = [
    {
        "name": "File",
        "config": {
            "supported_file_types": (
                ".png, .jpeg, .jpg, .tiff, .tif, .pdf, .xls, .xlsx, .doc, .docx, "
                ".pptx, .csv, .html, .mhtml, .txt, .md, .zip"
            ),
            "private": False,
        },
        "index_type": "ktem.index.file.FileIndex",
    },
    {
        "name": "GraphRAG",
        "config": {
            "supported_file_types": (
                ".png, .jpeg, .jpg, .tiff, .tif, .pdf, .xls, .xlsx, .doc, .docx, "
                ".pptx, .csv, .html, .mhtml, .txt, .md, .zip"
            ),
            "private": False,
        },
        "index_type": "ktem.index.file.graph.GraphRAGIndex",
    },
]