FLUX-Prompt-Generator / ui_components.py
gokaygokay's picture
image generation delete
6f82089
raw
history blame
15.4 kB
import gradio as gr
from prompt_generator import PromptGenerator
from huggingface_inference_node import LLMInferenceNode
from caption_models import florence_caption, qwen_caption, joycaption
import random
from prompt_generator import ARTFORM, PHOTO_TYPE, FEMALE_BODY_TYPES, MALE_BODY_TYPES, FEMALE_DEFAULT_TAGS, MALE_DEFAULT_TAGS, ROLES, HAIRSTYLES, FEMALE_CLOTHING, MALE_CLOTHING, PLACE, LIGHTING, COMPOSITION, POSE, BACKGROUND, FEMALE_ADDITIONAL_DETAILS, MALE_ADDITIONAL_DETAILS, PHOTOGRAPHY_STYLES, DEVICE, PHOTOGRAPHER, ARTIST, DIGITAL_ARTFORM
title = """<h1 align="center">FLUX Prompt Generator</h1>
<p><center>
<a href="https://x.com/gokayfem" target="_blank">[X gokaygokay]</a>
<a href="https://github.com/gokayfem" target="_blank">[Github gokayfem]</a>
<a href="https://github.com/dagthomas/comfyui_dagthomas" target="_blank">[comfyui_dagthomas]</a>
<p align="center">Create long prompts from images or simple words. Enhance your short prompts with prompt enhancer.</p>
</center></p>
"""
# Add this global variable
selected_prompt_type = "happy" # Default value
def create_interface():
prompt_generator = PromptGenerator()
llm_node = LLMInferenceNode()
with gr.Blocks(theme='bethecloud/storj_theme') as demo:
gr.HTML(title)
with gr.Row():
with gr.Column(scale=2):
with gr.Accordion("Basic Settings"):
custom = gr.Textbox(label="Custom Input Prompt (optional)")
subject = gr.Textbox(label="Subject (optional)")
gender = gr.Radio(["female", "male"], label="Gender", value="female")
global_option = gr.Radio(
["Disabled", "Random", "No Figure Rand"],
label="Set all options to:",
value="Disabled"
)
with gr.Accordion("Artform and Photo Type", open=False):
artform = gr.Dropdown(["disabled", "random"] + ARTFORM, label="Artform", value="disabled")
photo_type = gr.Dropdown(["disabled", "random"] + PHOTO_TYPE, label="Photo Type", value="disabled")
with gr.Accordion("Character Details", open=False):
body_types = gr.Dropdown(["disabled", "random"] + FEMALE_BODY_TYPES + MALE_BODY_TYPES, label="Body Types", value="disabled")
default_tags = gr.Dropdown(["disabled", "random"] + FEMALE_DEFAULT_TAGS + MALE_DEFAULT_TAGS, label="Default Tags", value="disabled")
roles = gr.Dropdown(["disabled", "random"] + ROLES, label="Roles", value="disabled")
hairstyles = gr.Dropdown(["disabled", "random"] + HAIRSTYLES, label="Hairstyles", value="disabled")
clothing = gr.Dropdown(["disabled", "random"] + FEMALE_CLOTHING + MALE_CLOTHING, label="Clothing", value="disabled")
with gr.Accordion("Scene Details", open=False):
place = gr.Dropdown(["disabled", "random"] + PLACE, label="Place", value="disabled")
lighting = gr.Dropdown(["disabled", "random"] + LIGHTING, label="Lighting", value="disabled")
composition = gr.Dropdown(["disabled", "random"] + COMPOSITION, label="Composition", value="disabled")
pose = gr.Dropdown(["disabled", "random"] + POSE, label="Pose", value="disabled")
background = gr.Dropdown(["disabled", "random"] + BACKGROUND, label="Background", value="disabled")
with gr.Accordion("Style and Artist", open=False):
additional_details = gr.Dropdown(["disabled", "random"] + FEMALE_ADDITIONAL_DETAILS + MALE_ADDITIONAL_DETAILS, label="Additional Details", value="disabled")
photography_styles = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHY_STYLES, label="Photography Styles", value="disabled")
device = gr.Dropdown(["disabled", "random"] + DEVICE, label="Device", value="disabled")
photographer = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHER, label="Photographer", value="disabled")
artist = gr.Dropdown(["disabled", "random"] + ARTIST, label="Artist", value="disabled")
digital_artform = gr.Dropdown(["disabled", "random"] + DIGITAL_ARTFORM, label="Digital Artform", value="disabled")
# Add Next components
with gr.Accordion("More Detailed Prompt Options", open=False):
next_components = {}
for category, fields in prompt_generator.next_data.items():
with gr.Accordion(f"{category.capitalize()} Options", open=False):
category_components = {}
for field, data in fields.items():
if isinstance(data, list):
options = ["None", "Random", "Multiple Random"] + data
elif isinstance(data, dict):
options = ["None", "Random", "Multiple Random"] + data.get("items", [])
else:
options = ["None", "Random", "Multiple Random"]
category_components[field] = gr.Dropdown(options, label=field.capitalize(), value="None")
next_components[category] = category_components
with gr.Column(scale=2):
generate_button = gr.Button("Generate Prompt")
with gr.Accordion("Image and Caption", open=False):
input_image = gr.Image(label="Input Image (optional)")
caption_output = gr.Textbox(label="Generated Caption", lines=3, show_copy_button=True)
caption_model = gr.Radio(["Florence-2", "Qwen2-VL", "JoyCaption"], label="Caption Model", value="Florence-2")
create_caption_button = gr.Button("Create Caption")
add_caption_button = gr.Button("Add Caption to Prompt")
with gr.Accordion("Prompt Generation", open=True):
output = gr.Textbox(label="Generated Prompt / Input Text", lines=4, show_copy_button=True)
t5xxl_output = gr.Textbox(label="T5XXL Output", visible=True, show_copy_button=True)
clip_l_output = gr.Textbox(label="CLIP L Output", visible=True, show_copy_button=True)
clip_g_output = gr.Textbox(label="CLIP G Output", visible=True, show_copy_button=True)
with gr.Column(scale=2):
with gr.Accordion("""Prompt Generation with LLM
(You need to use Generate Prompt first)""", open=False):
happy_talk = gr.Checkbox(label="Happy Talk", value=True)
compress = gr.Checkbox(label="Compress", value=True)
compression_level = gr.Dropdown(
choices=["soft", "medium", "hard"],
label="Compression Level",
value="hard"
)
custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5)
prompt_type = gr.Dropdown(
choices=["happy", "simple", "poster", "only_objects", "no_figure", "landscape", "fantasy"],
label="Prompt Type",
value="happy",
interactive=True
)
# Add the missing update_prompt_type function
def update_prompt_type(value):
global selected_prompt_type
selected_prompt_type = value
print(f"Updated prompt type: {selected_prompt_type}")
return value
# Connect the update_prompt_type function to the prompt_type dropdown
prompt_type.change(update_prompt_type, inputs=[prompt_type], outputs=[prompt_type])
# Add new components for LLM provider selection
llm_provider = gr.Dropdown(
choices=["Hugging Face", "Groq", "SambaNova", "OpenAI", "Anthropic"],
label="LLM Provider",
value="Hugging Face"
)
api_key = gr.Textbox(label="API Key", type="password", visible=False)
model = gr.Dropdown(label="Model", choices=["Qwen/Qwen2.5-72B-Instruct", "meta-llama/Meta-Llama-3.1-70B-Instruct", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3"], value="Qwen/Qwen2.5-72B-Instruct")
generate_text_button = gr.Button("Generate Prompt with LLM")
text_output = gr.Textbox(label="Generated Text", lines=10, show_copy_button=True)
def create_caption(image, model):
if image is not None:
if model == "Florence-2":
return florence_caption(image)
elif model == "Qwen2-VL":
return qwen_caption(image)
elif model == "JoyCaption":
return joycaption(image)
return ""
create_caption_button.click(
create_caption,
inputs=[input_image, caption_model],
outputs=[caption_output]
)
def generate_prompt_with_dynamic_seed(*args, **kwargs):
dynamic_seed = random.randint(0, 1000000)
# Extract the main arguments
main_args = args[:22] # Assuming there are 22 main arguments before the next_params
# Extract next_params
next_params = {}
next_args = args[22:] # All arguments after the main ones are for next_params
next_arg_index = 0
for category, fields in prompt_generator.next_data.items():
category_params = {}
for field in fields:
value = next_args[next_arg_index]
# Include all values, even "None", "Random", and "Multiple Random"
category_params[field] = value
next_arg_index += 1
if category_params:
next_params[category] = category_params
# Call generate_prompt with the correct arguments
result = prompt_generator.generate_prompt(dynamic_seed, *main_args, next_params=next_params)
return [dynamic_seed] + list(result)
generate_button.click(
generate_prompt_with_dynamic_seed,
inputs=[custom, subject, gender, artform, photo_type, body_types, default_tags, roles, hairstyles,
additional_details, photography_styles, device, photographer, artist, digital_artform,
place, lighting, clothing, composition, pose, background, input_image] +
[component for category in next_components.values() for component in category.values()],
outputs=[gr.Number(label="Used Seed", visible=False), output, gr.Number(visible=False), t5xxl_output, clip_l_output, clip_g_output]
)
add_caption_button.click(
prompt_generator.add_caption_to_prompt,
inputs=[output, caption_output],
outputs=[output]
)
def update_model_choices(provider):
provider_models = {
"Hugging Face": ["Qwen/Qwen2.5-72B-Instruct", "meta-llama/Meta-Llama-3.1-70B-Instruct", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3"],
"Groq": ["llama-3.2-90b-text-preview", "llama-3.1-70b-versatile", "mixtral-8x7b-32768"],
"OpenAI": ["gpt-4o", "gpt-4o-mini"],
"Anthropic": ["claude-3-5-sonnet-20240620"],
"SambaNova": ["Meta-Llama-3.1-70B-Instruct", "Meta-Llama-3.1-405B-Instruct", "Meta-Llama-3.1-8B-Instruct"],
}
models = provider_models[provider]
return gr.Dropdown(choices=models, value=models[0])
def update_api_key_visibility(provider):
return gr.update(visible=(provider in ["OpenAI", "Anthropic"]))
llm_provider.change(update_model_choices, inputs=[llm_provider], outputs=[model])
llm_provider.change(update_api_key_visibility, inputs=[llm_provider], outputs=[api_key])
def generate_text_with_llm(output, happy_talk, compress, compression_level, custom_base_prompt, provider, api_key, model):
global selected_prompt_type
result = llm_node.generate(output, happy_talk, compress, compression_level, False, selected_prompt_type, custom_base_prompt, provider, api_key, model)
selected_prompt_type = "happy" # Reset to "happy" after generation
return result, "happy" # Return the result and the new prompt type value
generate_text_button.click(
generate_text_with_llm,
inputs=[output, happy_talk, compress, compression_level, custom_base_prompt, llm_provider, api_key, model],
outputs=[text_output, prompt_type],
api_name="generate_text"
)
# Add this line to disable caching for the generate_text_with_llm function
generate_text_with_llm.cache_examples = False
def update_all_options(choice):
updates = {}
if choice == "Disabled":
for dropdown in [
artform, photo_type, body_types, default_tags, roles, hairstyles, clothing,
place, lighting, composition, pose, background, additional_details,
photography_styles, device, photographer, artist, digital_artform
]:
updates[dropdown] = gr.update(value="disabled")
elif choice == "Random":
for dropdown in [
artform, photo_type, body_types, default_tags, roles, hairstyles, clothing,
place, lighting, composition, pose, background, additional_details,
photography_styles, device, photographer, artist, digital_artform
]:
updates[dropdown] = gr.update(value="random")
else: # No Figure Random
for dropdown in [photo_type, body_types, default_tags, roles, hairstyles, clothing, pose, additional_details]:
updates[dropdown] = gr.update(value="disabled")
for dropdown in [artform, place, lighting, composition, background, photography_styles, device, photographer, artist, digital_artform]:
updates[dropdown] = gr.update(value="random")
return updates
global_option.change(
update_all_options,
inputs=[global_option],
outputs=[
artform, photo_type, body_types, default_tags, roles, hairstyles, clothing,
place, lighting, composition, pose, background, additional_details,
photography_styles, device, photographer, artist, digital_artform
]
)
return demo