gokaygokay's picture
refactor
b5b4980
raw
history blame
31.6 kB
import spaces
import gradio as gr
import random
import json
import os
import re
from datetime import datetime
from huggingface_hub import InferenceClient
import subprocess
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM, Qwen2VLForConditionalGeneration
from qwen_vl_utils import process_vision_info
import numpy as np
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Initialize Florence model
device = "cuda" if torch.cuda.is_available() else "cpu"
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True)
# Initialize Qwen2-VL-2B model
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").to(device).eval()
qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
# Florence caption function
@spaces.GPU
def florence_caption(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<MORE_DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
return parsed_answer["<MORE_DETAILED_CAPTION>"]
# Add this function to your code
def array_to_image_path(image_array):
# Convert numpy array to PIL Image
img = Image.fromarray(np.uint8(image_array))
# Generate a unique filename using timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
# Save the image
img.save(filename)
# Get the full path of the saved image
full_path = os.path.abspath(filename)
return full_path
# Qwen2-VL-2B caption function
@spaces.GPU
def qwen_caption(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(np.uint8(image))
image_path = array_to_image_path(np.array(image))
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path,
},
{"type": "text", "text": "Describe this image in great detail."},
],
}
]
text = qwen_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = qwen_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(device)
generated_ids = qwen_model.generate(**inputs, max_new_tokens=256)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = qwen_processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
# Load JSON files
def load_json_file(file_name):
file_path = os.path.join("data", file_name)
with open(file_path, "r") as file:
return json.load(file)
# Load gender-specific JSON files
FEMALE_DEFAULT_TAGS = load_json_file("female_default_tags.json")
MALE_DEFAULT_TAGS = load_json_file("male_default_tags.json")
FEMALE_BODY_TYPES = load_json_file("female_body_types.json")
MALE_BODY_TYPES = load_json_file("male_body_types.json")
FEMALE_CLOTHING = load_json_file("female_clothing.json")
MALE_CLOTHING = load_json_file("male_clothing.json")
FEMALE_ADDITIONAL_DETAILS = load_json_file("female_additional_details.json")
MALE_ADDITIONAL_DETAILS = load_json_file("male_additional_details.json")
# Load non-gender-specific JSON files
ARTFORM = load_json_file("artform.json")
PHOTO_TYPE = load_json_file("photo_type.json")
ROLES = load_json_file("roles.json")
HAIRSTYLES = load_json_file("hairstyles.json")
PLACE = load_json_file("place.json")
LIGHTING = load_json_file("lighting.json")
COMPOSITION = load_json_file("composition.json")
POSE = load_json_file("pose.json")
BACKGROUND = load_json_file("background.json")
PHOTOGRAPHY_STYLES = load_json_file("photography_styles.json")
DEVICE = load_json_file("device.json")
PHOTOGRAPHER = load_json_file("photographer.json")
ARTIST = load_json_file("artist.json")
DIGITAL_ARTFORM = load_json_file("digital_artform.json")
class PromptGenerator:
def __init__(self, seed=None):
self.rng = random.Random(seed)
def split_and_choose(self, input_str):
choices = [choice.strip() for choice in input_str.split(",")]
return self.rng.choices(choices, k=1)[0]
def get_choice(self, input_str, default_choices):
if input_str.lower() == "disabled":
return ""
elif "," in input_str:
return self.split_and_choose(input_str)
elif input_str.lower() == "random":
return self.rng.choices(default_choices, k=1)[0]
else:
return input_str
def clean_consecutive_commas(self, input_string):
cleaned_string = re.sub(r',\s*,', ', ', input_string)
return cleaned_string
def process_string(self, replaced, seed):
replaced = re.sub(r'\s*,\s*', ', ', replaced)
replaced = re.sub(r',+', ', ', replaced)
original = replaced
first_break_clipl_index = replaced.find("BREAK_CLIPL")
second_break_clipl_index = replaced.find("BREAK_CLIPL", first_break_clipl_index + len("BREAK_CLIPL"))
if first_break_clipl_index != -1 and second_break_clipl_index != -1:
clip_content_l = replaced[first_break_clipl_index + len("BREAK_CLIPL"):second_break_clipl_index]
replaced = replaced[:first_break_clipl_index].strip(", ") + replaced[second_break_clipl_index + len("BREAK_CLIPL"):].strip(", ")
clip_l = clip_content_l
else:
clip_l = ""
first_break_clipg_index = replaced.find("BREAK_CLIPG")
second_break_clipg_index = replaced.find("BREAK_CLIPG", first_break_clipg_index + len("BREAK_CLIPG"))
if first_break_clipg_index != -1 and second_break_clipg_index != -1:
clip_content_g = replaced[first_break_clipg_index + len("BREAK_CLIPG"):second_break_clipg_index]
replaced = replaced[:first_break_clipg_index].strip(", ") + replaced[second_break_clipg_index + len("BREAK_CLIPG"):].strip(", ")
clip_g = clip_content_g
else:
clip_g = ""
t5xxl = replaced
original = original.replace("BREAK_CLIPL", "").replace("BREAK_CLIPG", "")
original = re.sub(r'\s*,\s*', ', ', original)
original = re.sub(r',+', ', ', original)
clip_l = re.sub(r'\s*,\s*', ', ', clip_l)
clip_l = re.sub(r',+', ', ', clip_l)
clip_g = re.sub(r'\s*,\s*', ', ', clip_g)
clip_g = re.sub(r',+', ', ', clip_g)
if clip_l.startswith(", "):
clip_l = clip_l[2:]
if clip_g.startswith(", "):
clip_g = clip_g[2:]
if original.startswith(", "):
original = original[2:]
if t5xxl.startswith(", "):
t5xxl = t5xxl[2:]
# Add spaces after commas
replaced = re.sub(r',(?!\s)', ', ', replaced)
original = re.sub(r',(?!\s)', ', ', original)
clip_l = re.sub(r',(?!\s)', ', ', clip_l)
clip_g = re.sub(r',(?!\s)', ', ', clip_g)
t5xxl = re.sub(r',(?!\s)', ', ', t5xxl)
return original, seed, t5xxl, clip_l, clip_g
def generate_prompt(self, seed, custom, subject, gender, artform, photo_type, body_types, default_tags, roles, hairstyles,
additional_details, photography_styles, device, photographer, artist, digital_artform,
place, lighting, clothing, composition, pose, background, input_image):
kwargs = locals()
del kwargs['self']
seed = kwargs.get("seed", 0)
if seed is not None:
self.rng = random.Random(seed)
components = []
custom = kwargs.get("custom", "")
if custom:
components.append(custom)
is_photographer = kwargs.get("artform", "").lower() == "photography" or (
kwargs.get("artform", "").lower() == "random"
and self.rng.choice([True, False])
)
subject = kwargs.get("subject", "")
gender = kwargs.get("gender", "female")
if is_photographer:
selected_photo_style = self.get_choice(kwargs.get("photography_styles", ""), PHOTOGRAPHY_STYLES)
if not selected_photo_style:
selected_photo_style = "photography"
components.append(selected_photo_style)
if kwargs.get("photography_style", "") != "disabled" and kwargs.get("default_tags", "") != "disabled" or subject != "":
components.append(" of")
default_tags = kwargs.get("default_tags", "random")
body_type = kwargs.get("body_types", "")
if not subject:
if default_tags == "random":
if body_type != "disabled" and body_type != "random":
selected_subject = self.get_choice(kwargs.get("default_tags", ""), FEMALE_DEFAULT_TAGS if gender == "female" else MALE_DEFAULT_TAGS).replace("a ", "").replace("an ", "")
components.append("a ")
components.append(body_type)
components.append(selected_subject)
elif body_type == "disabled":
selected_subject = self.get_choice(kwargs.get("default_tags", ""), FEMALE_DEFAULT_TAGS if gender == "female" else MALE_DEFAULT_TAGS)
components.append(selected_subject)
else:
body_type = self.get_choice(body_type, FEMALE_BODY_TYPES if gender == "female" else MALE_BODY_TYPES)
components.append("a ")
components.append(body_type)
selected_subject = self.get_choice(kwargs.get("default_tags", ""), FEMALE_DEFAULT_TAGS if gender == "female" else MALE_DEFAULT_TAGS).replace("a ", "").replace("an ", "")
components.append(selected_subject)
elif default_tags == "disabled":
pass
else:
components.append(default_tags)
else:
if body_type != "disabled" and body_type != "random":
components.append("a ")
components.append(body_type)
elif body_type == "disabled":
pass
else:
body_type = self.get_choice(body_type, FEMALE_BODY_TYPES if gender == "female" else MALE_BODY_TYPES)
components.append("a ")
components.append(body_type)
components.append(subject)
params = [
("roles", ROLES),
("hairstyles", HAIRSTYLES),
("additional_details", FEMALE_ADDITIONAL_DETAILS if gender == "female" else MALE_ADDITIONAL_DETAILS),
]
for param in params:
components.append(self.get_choice(kwargs.get(param[0], ""), param[1]))
for i in reversed(range(len(components))):
if components[i] in PLACE:
components[i] += ", "
break
if kwargs.get("clothing", "") != "disabled" and kwargs.get("clothing", "") != "random":
components.append(", dressed in ")
clothing = kwargs.get("clothing", "")
components.append(clothing)
elif kwargs.get("clothing", "") == "random":
components.append(", dressed in ")
clothing = self.get_choice(kwargs.get("clothing", ""), FEMALE_CLOTHING if gender == "female" else MALE_CLOTHING)
components.append(clothing)
if kwargs.get("composition", "") != "disabled" and kwargs.get("composition", "") != "random":
components.append(", ")
composition = kwargs.get("composition", "")
components.append(composition)
elif kwargs.get("composition", "") == "random":
components.append(", ")
composition = self.get_choice(kwargs.get("composition", ""), COMPOSITION)
components.append(composition)
if kwargs.get("pose", "") != "disabled" and kwargs.get("pose", "") != "random":
components.append(", ")
pose = kwargs.get("pose", "")
components.append(pose)
elif kwargs.get("pose", "") == "random":
components.append(", ")
pose = self.get_choice(kwargs.get("pose", ""), POSE)
components.append(pose)
components.append("BREAK_CLIPG")
if kwargs.get("background", "") != "disabled" and kwargs.get("background", "") != "random":
components.append(", ")
background = kwargs.get("background", "")
components.append(background)
elif kwargs.get("background", "") == "random":
components.append(", ")
background = self.get_choice(kwargs.get("background", ""), BACKGROUND)
components.append(background)
if kwargs.get("place", "") != "disabled" and kwargs.get("place", "") != "random":
components.append(", ")
place = kwargs.get("place", "")
components.append(place)
elif kwargs.get("place", "") == "random":
components.append(", ")
place = self.get_choice(kwargs.get("place", ""), PLACE)
components.append(place + ", ")
lighting = kwargs.get("lighting", "").lower()
if lighting == "random":
selected_lighting = ", ".join(self.rng.sample(LIGHTING, self.rng.randint(2, 5)))
components.append(", ")
components.append(selected_lighting)
elif lighting == "disabled":
pass
else:
components.append(", ")
components.append(lighting)
components.append("BREAK_CLIPG")
components.append("BREAK_CLIPL")
if is_photographer:
if kwargs.get("photo_type", "") != "disabled":
photo_type_choice = self.get_choice(kwargs.get("photo_type", ""), PHOTO_TYPE)
if photo_type_choice and photo_type_choice != "random" and photo_type_choice != "disabled":
random_value = round(self.rng.uniform(1.1, 1.5), 1)
components.append(f", ({photo_type_choice}:{random_value}), ")
params = [
("device", DEVICE),
("photographer", PHOTOGRAPHER),
]
components.extend([self.get_choice(kwargs.get(param[0], ""), param[1]) for param in params])
if kwargs.get("device", "") != "disabled":
components[-2] = f", shot on {components[-2]}"
if kwargs.get("photographer", "") != "disabled":
components[-1] = f", photo by {components[-1]}"
else:
digital_artform_choice = self.get_choice(kwargs.get("digital_artform", ""), DIGITAL_ARTFORM)
if digital_artform_choice:
components.append(f"{digital_artform_choice}")
if kwargs.get("artist", "") != "disabled":
components.append(f"by {self.get_choice(kwargs.get('artist', ''), ARTIST)}")
components.append("BREAK_CLIPL")
prompt = " ".join(components)
prompt = re.sub(" +", " ", prompt)
replaced = prompt.replace("of as", "of")
replaced = self.clean_consecutive_commas(replaced)
return self.process_string(replaced, seed)
def add_caption_to_prompt(self, prompt, caption):
if caption:
return f"{prompt}, {caption}"
return prompt
import os
from openai import OpenAI
class HuggingFaceInferenceNode:
def __init__(self):
self.client = OpenAI(
base_url="/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fv1%2F%26quot%3B%3C%2Fspan%3E%2C%3C!-- HTML_TAG_END -->
api_key=huggingface_token,
)
self.prompts_dir = "./prompts"
os.makedirs(self.prompts_dir, exist_ok=True)
def save_prompt(self, prompt):
filename_text = "hf_" + prompt.split(',')[0].strip()
filename_text = re.sub(r'[^\w\-_\. ]', '_', filename_text)
filename_text = filename_text[:30]
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
base_filename = f"{filename_text}_{timestamp}.txt"
filename = os.path.join(self.prompts_dir, base_filename)
with open(filename, "w") as file:
file.write(prompt)
print(f"Prompt saved to {filename}")
def generate(self, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt=""):
try:
default_happy_prompt = """Create a detailed visually descriptive caption of this description, which will be used as a prompt for a text to image AI system (caption only, no instructions like "create an image").Remove any mention of digital artwork or artwork style. Give detailed visual descriptions of the character(s), including ethnicity, skin tone, expression etc. Imagine using keywords for a still for someone who has aphantasia. Describe the image style, e.g. any photographic or art styles / techniques utilized. Make sure to fully describe all aspects of the cinematography, with abundant technical details and visual descriptions. If there is more than one image, combine the elements and characters from all of the images creatively into a single cohesive composition with a single background, inventing an interaction between the characters. Be creative in combining the characters into a single cohesive scene. Focus on two primary characters (or one) and describe an interesting interaction between them, such as a hug, a kiss, a fight, giving an object, an emotional reaction / interaction. If there is more than one background in the images, pick the most appropriate one. Your output is only the caption itself, no comments or extra formatting. The caption is in a single long paragraph. If you feel the images are inappropriate, invent a new scene / characters inspired by these. Additionally, incorporate a specific movie director's visual style and describe the lighting setup in detail, including the type, color, and placement of light sources to create the desired mood and atmosphere. Always frame the scene, including details about the film grain, color grading, and any artifacts or characteristics specific."""
default_simple_prompt = """Create a brief, straightforward caption for this description, suitable for a text-to-image AI system. Focus on the main elements, key characters, and overall scene without elaborate details. Provide a clear and concise description in one or two sentences."""
poster_prompt = """Analyze the provided description and extract key information to create a movie poster style description. Format the output as follows:
Title: A catchy, intriguing title that captures the essence of the scene, place the title in "".
Main character: Give a description of the main character.
Background: Describe the background in detail.
Supporting characters: Describe the supporting characters
Branding type: Describe the branding type
Tagline: Include a tagline that captures the essence of the movie.
Visual style: Ensure that the visual style fits the branding type and tagline.
You are allowed to make up film and branding names, and do them like 80's, 90's or modern movie posters."""
if poster:
base_prompt = poster_prompt
elif custom_base_prompt.strip():
base_prompt = custom_base_prompt
else:
base_prompt = default_happy_prompt if happy_talk else default_simple_prompt
if compress and not poster:
compression_chars = {
"soft": 600 if happy_talk else 300,
"medium": 400 if happy_talk else 200,
"hard": 200 if happy_talk else 100
}
char_limit = compression_chars[compression_level]
base_prompt += f" Compress the output to be concise while retaining key visual details. MAX OUTPUT SIZE no more than {char_limit} characters."
system_message = "You are a helpful assistant. Try your best to give the best response possible to the user."
user_message = f"{base_prompt}\nDescription: {input_text}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
response = self.client.chat.completions.create(
model="meta-llama/Meta-Llama-3.1-70B-Instruct",
max_tokens=1024,
temperature=0.7,
top_p=0.95,
messages=messages,
)
output = response.choices[0].message.content.strip()
# Clean up the output
if ": " in output:
output = output.split(": ", 1)[1].strip()
elif output.lower().startswith("here"):
sentences = output.split(". ")
if len(sentences) > 1:
output = ". ".join(sentences[1:]).strip()
return output
except Exception as e:
print(f"An error occurred: {e}")
return f"Error occurred while processing the request: {str(e)}"
title = """<h1 align="center">FLUX Prompt Generator</h1>
<p><center>
<a href="https://x.com/gokayfem" target="_blank">[X gokaygokay]</a>
<a href="https://github.com/gokayfem" target="_blank">[Github gokayfem]</a>
<a href="https://github.com/dagthomas/comfyui_dagthomas" target="_blank">[comfyui_dagthomas]</a>
<p align="center">Create long prompts from images or simple words. Enhance your short prompts with prompt enhancer.</p>
</center></p>
"""
def create_interface():
prompt_generator = PromptGenerator()
huggingface_node = HuggingFaceInferenceNode()
with gr.Blocks(theme='bethecloud/storj_theme') as demo:
gr.HTML(title)
with gr.Row():
with gr.Column(scale=2):
with gr.Accordion("Basic Settings"):
custom = gr.Textbox(label="Custom Input Prompt (optional)")
subject = gr.Textbox(label="Subject (optional)")
gender = gr.Radio(["female", "male"], label="Gender", value="female")
# Add the radio button for global option selection
global_option = gr.Radio(
["Disabled", "Random", "No Figure Rand"],
label="Set all options to:",
value="Disabled"
)
with gr.Accordion("Artform and Photo Type", open=False):
artform = gr.Dropdown(["disabled", "random"] + ARTFORM, label="Artform", value="disabled")
photo_type = gr.Dropdown(["disabled", "random"] + PHOTO_TYPE, label="Photo Type", value="disabled")
with gr.Accordion("Character Details", open=False):
body_types = gr.Dropdown(["disabled", "random"] + FEMALE_BODY_TYPES + MALE_BODY_TYPES, label="Body Types", value="disabled")
default_tags = gr.Dropdown(["disabled", "random"] + FEMALE_DEFAULT_TAGS + MALE_DEFAULT_TAGS, label="Default Tags", value="disabled")
roles = gr.Dropdown(["disabled", "random"] + ROLES, label="Roles", value="disabled")
hairstyles = gr.Dropdown(["disabled", "random"] + HAIRSTYLES, label="Hairstyles", value="disabled")
clothing = gr.Dropdown(["disabled", "random"] + FEMALE_CLOTHING + MALE_CLOTHING, label="Clothing", value="disabled")
with gr.Accordion("Scene Details", open=False):
place = gr.Dropdown(["disabled", "random"] + PLACE, label="Place", value="disabled")
lighting = gr.Dropdown(["disabled", "random"] + LIGHTING, label="Lighting", value="disabled")
composition = gr.Dropdown(["disabled", "random"] + COMPOSITION, label="Composition", value="disabled")
pose = gr.Dropdown(["disabled", "random"] + POSE, label="Pose", value="disabled")
background = gr.Dropdown(["disabled", "random"] + BACKGROUND, label="Background", value="disabled")
with gr.Accordion("Style and Artist", open=False):
additional_details = gr.Dropdown(["disabled", "random"] + FEMALE_ADDITIONAL_DETAILS + MALE_ADDITIONAL_DETAILS, label="Additional Details", value="disabled")
photography_styles = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHY_STYLES, label="Photography Styles", value="disabled")
device = gr.Dropdown(["disabled", "random"] + DEVICE, label="Device", value="disabled")
photographer = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHER, label="Photographer", value="disabled")
artist = gr.Dropdown(["disabled", "random"] + ARTIST, label="Artist", value="disabled")
digital_artform = gr.Dropdown(["disabled", "random"] + DIGITAL_ARTFORM, label="Digital Artform", value="disabled")
generate_button = gr.Button("Generate Prompt")
with gr.Column(scale=2):
with gr.Accordion("Image and Caption", open=False):
input_image = gr.Image(label="Input Image (optional)")
caption_output = gr.Textbox(label="Generated Caption", lines=3)
caption_model = gr.Radio(["Florence-2", "Qwen2-VL"], label="Caption Model", value="Florence-2")
create_caption_button = gr.Button("Create Caption")
add_caption_button = gr.Button("Add Caption to Prompt")
with gr.Accordion("Prompt Generation", open=True):
output = gr.Textbox(label="Generated Prompt / Input Text", lines=4)
t5xxl_output = gr.Textbox(label="T5XXL Output", visible=True)
clip_l_output = gr.Textbox(label="CLIP L Output", visible=True)
clip_g_output = gr.Textbox(label="CLIP G Output", visible=True)
with gr.Column(scale=2):
with gr.Accordion("Prompt Generation with LLM", open=False):
happy_talk = gr.Checkbox(label="Happy Talk", value=True)
compress = gr.Checkbox(label="Compress", value=True)
compression_level = gr.Radio(["soft", "medium", "hard"], label="Compression Level", value="hard")
poster = gr.Checkbox(label="Poster", value=False)
custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5)
generate_text_button = gr.Button("Generate Prompt with LLM (Llama 3.1 70B)")
text_output = gr.Textbox(label="Generated Text", lines=10)
def create_caption(image, model):
if image is not None:
if model == "Florence-2":
return florence_caption(image)
elif model == "Qwen2-VL":
return qwen_caption(image)
return ""
create_caption_button.click(
create_caption,
inputs=[input_image, caption_model],
outputs=[caption_output]
)
def generate_prompt_with_dynamic_seed(*args):
# Generate a new random seed
dynamic_seed = random.randint(0, 1000000)
# Call the generate_prompt function with the dynamic seed
result = prompt_generator.generate_prompt(dynamic_seed, *args)
# Return the result along with the used seed
return [dynamic_seed] + list(result)
generate_button.click(
generate_prompt_with_dynamic_seed,
inputs=[custom, subject, gender, artform, photo_type, body_types, default_tags, roles, hairstyles,
additional_details, photography_styles, device, photographer, artist, digital_artform,
place, lighting, clothing, composition, pose, background, input_image],
outputs=[gr.Number(label="Used Seed", visible=True), output, gr.Number(visible=False), t5xxl_output, clip_l_output, clip_g_output]
)
add_caption_button.click(
prompt_generator.add_caption_to_prompt,
inputs=[output, caption_output],
outputs=[output]
)
generate_text_button.click(
huggingface_node.generate,
inputs=[output, happy_talk, compress, compression_level, poster, custom_base_prompt],
outputs=text_output
)
def update_all_options(choice):
updates = {}
if choice == "Disabled":
for dropdown in [
artform, photo_type, body_types, default_tags, roles, hairstyles, clothing,
place, lighting, composition, pose, background, additional_details,
photography_styles, device, photographer, artist, digital_artform
]:
updates[dropdown] = gr.update(value="disabled")
elif choice == "Random":
for dropdown in [
artform, photo_type, body_types, default_tags, roles, hairstyles, clothing,
place, lighting, composition, pose, background, additional_details,
photography_styles, device, photographer, artist, digital_artform
]:
updates[dropdown] = gr.update(value="random")
else: # No Figure Random
for dropdown in [photo_type, body_types, default_tags, roles, hairstyles, clothing, pose, additional_details]:
updates[dropdown] = gr.update(value="disabled")
for dropdown in [artform, place, lighting, composition, background, photography_styles, device, photographer, artist, digital_artform]:
updates[dropdown] = gr.update(value="random")
return updates
global_option.change(
update_all_options,
inputs=[global_option],
outputs=[
artform, photo_type, body_types, default_tags, roles, hairstyles, clothing,
place, lighting, composition, pose, background, additional_details,
photography_styles, device, photographer, artist, digital_artform
]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()