Spaces:
Running
on
Zero
Running
on
Zero
π
Browse filesHere, you seem to have dropped this.
Don't worry, I got it!
app.py
CHANGED
@@ -1,2 +1,228 @@
|
|
|
|
|
|
1 |
import os
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import argparse
|
3 |
import os
|
4 |
+
import time
|
5 |
+
from os import path
|
6 |
+
import shutil
|
7 |
+
from datetime import datetime
|
8 |
+
from safetensors.torch import load_file
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
import gradio as gr
|
11 |
+
import torch
|
12 |
+
from diffusers import FluxPipeline
|
13 |
+
from PIL import Image
|
14 |
+
from transformers import pipeline
|
15 |
+
|
16 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
17 |
+
|
18 |
+
# Hugging Face ν ν° μ€μ
|
19 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
20 |
+
if HF_TOKEN is None:
|
21 |
+
raise ValueError("HF_TOKEN environment variable is not set")
|
22 |
+
|
23 |
+
# Setup and initialization code
|
24 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
25 |
+
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
|
26 |
+
gallery_path = path.join(PERSISTENT_DIR, "gallery")
|
27 |
+
|
28 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
29 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
30 |
+
os.environ["HF_HOME"] = cache_path
|
31 |
+
|
32 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
33 |
+
|
34 |
+
# Create gallery directory if it doesn't exist
|
35 |
+
if not path.exists(gallery_path):
|
36 |
+
os.makedirs(gallery_path, exist_ok=True)
|
37 |
+
|
38 |
+
class timer:
|
39 |
+
def __init__(self, method_name="timed process"):
|
40 |
+
self.method = method_name
|
41 |
+
def __enter__(self):
|
42 |
+
self.start = time.time()
|
43 |
+
print(f"{self.method} starts")
|
44 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
45 |
+
end = time.time()
|
46 |
+
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
47 |
+
|
48 |
+
# Model initialization
|
49 |
+
if not path.exists(cache_path):
|
50 |
+
os.makedirs(cache_path, exist_ok=True)
|
51 |
+
|
52 |
+
# μΈμ¦λ λͺ¨λΈ λ‘λ
|
53 |
+
pipe = FluxPipeline.from_pretrained(
|
54 |
+
"black-forest-labs/FLUX.1-dev",
|
55 |
+
torch_dtype=torch.bfloat16,
|
56 |
+
use_auth_token=HF_TOKEN
|
57 |
+
)
|
58 |
+
|
59 |
+
# Hyper-SD LoRA λ‘λ (μΈμ¦ ν¬ν¨)
|
60 |
+
pipe.load_lora_weights(
|
61 |
+
hf_hub_download(
|
62 |
+
"ByteDance/Hyper-SD",
|
63 |
+
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
|
64 |
+
use_auth_token=HF_TOKEN
|
65 |
+
)
|
66 |
+
)
|
67 |
+
pipe.fuse_lora(lora_scale=0.125)
|
68 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
69 |
+
|
70 |
+
def save_image(image):
|
71 |
+
"""Save the generated image and return the path"""
|
72 |
+
try:
|
73 |
+
if not os.path.exists(gallery_path):
|
74 |
+
try:
|
75 |
+
os.makedirs(gallery_path, exist_ok=True)
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Failed to create gallery directory: {str(e)}")
|
78 |
+
return None
|
79 |
+
|
80 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
81 |
+
random_suffix = os.urandom(4).hex()
|
82 |
+
filename = f"generated_{timestamp}_{random_suffix}.png"
|
83 |
+
filepath = os.path.join(gallery_path, filename)
|
84 |
+
|
85 |
+
try:
|
86 |
+
if isinstance(image, Image.Image):
|
87 |
+
image.save(filepath, "PNG", quality=100)
|
88 |
+
else:
|
89 |
+
image = Image.fromarray(image)
|
90 |
+
image.save(filepath, "PNG", quality=100)
|
91 |
+
|
92 |
+
if not os.path.exists(filepath):
|
93 |
+
print(f"Warning: Failed to verify saved image at {filepath}")
|
94 |
+
return None
|
95 |
+
|
96 |
+
return filepath
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Failed to save image: {str(e)}")
|
99 |
+
return None
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
print(f"Error in save_image: {str(e)}")
|
103 |
+
return None
|
104 |
+
|
105 |
+
# Create Gradio interface
|
106 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
107 |
+
with gr.Row():
|
108 |
+
with gr.Column(scale=3):
|
109 |
+
prompt = gr.Textbox(
|
110 |
+
label="Image Description",
|
111 |
+
placeholder="Describe the image you want to create...",
|
112 |
+
lines=3
|
113 |
+
)
|
114 |
+
|
115 |
+
with gr.Accordion("Advanced Settings", open=False):
|
116 |
+
with gr.Row():
|
117 |
+
height = gr.Slider(
|
118 |
+
label="Height",
|
119 |
+
minimum=256,
|
120 |
+
maximum=1152,
|
121 |
+
step=64,
|
122 |
+
value=1024
|
123 |
+
)
|
124 |
+
width = gr.Slider(
|
125 |
+
label="Width",
|
126 |
+
minimum=256,
|
127 |
+
maximum=1152,
|
128 |
+
step=64,
|
129 |
+
value=1024
|
130 |
+
)
|
131 |
+
|
132 |
+
with gr.Row():
|
133 |
+
steps = gr.Slider(
|
134 |
+
label="Inference Steps",
|
135 |
+
minimum=6,
|
136 |
+
maximum=25,
|
137 |
+
step=1,
|
138 |
+
value=8
|
139 |
+
)
|
140 |
+
scales = gr.Slider(
|
141 |
+
label="Guidance Scale",
|
142 |
+
minimum=0.0,
|
143 |
+
maximum=5.0,
|
144 |
+
step=0.1,
|
145 |
+
value=3.5
|
146 |
+
)
|
147 |
+
|
148 |
+
def get_random_seed():
|
149 |
+
return torch.randint(0, 1000000, (1,)).item()
|
150 |
+
|
151 |
+
seed = gr.Number(
|
152 |
+
label="Seed (random by default, set for reproducibility)",
|
153 |
+
value=get_random_seed(),
|
154 |
+
precision=0
|
155 |
+
)
|
156 |
+
|
157 |
+
randomize_seed = gr.Button("π² Randomize Seed", elem_classes=["generate-btn"])
|
158 |
+
|
159 |
+
generate_btn = gr.Button(
|
160 |
+
"β¨ Generate Image",
|
161 |
+
elem_classes=["generate-btn"]
|
162 |
+
)
|
163 |
+
|
164 |
+
with gr.Column(scale=4, elem_classes=["fixed-width"]):
|
165 |
+
output = gr.Image(
|
166 |
+
label="Generated Image",
|
167 |
+
elem_id="output-image",
|
168 |
+
elem_classes=["output-image", "fixed-width"]
|
169 |
+
)
|
170 |
+
|
171 |
+
@spaces.GPU
|
172 |
+
def process_and_save_image(height, width, steps, scales, prompt, seed):
|
173 |
+
global pipe
|
174 |
+
|
175 |
+
# νκΈ κ°μ§ λ° λ²μ
|
176 |
+
def contains_korean(text):
|
177 |
+
return any(ord('κ°') <= ord(c) <= ord('ν£') for c in text)
|
178 |
+
|
179 |
+
# ν둬ννΈ μ μ²λ¦¬
|
180 |
+
if contains_korean(prompt):
|
181 |
+
# νκΈμ μμ΄λ‘ λ²μ
|
182 |
+
translated = translator(prompt)[0]['translation_text']
|
183 |
+
prompt = translated
|
184 |
+
|
185 |
+
# ν둬ννΈ νμ κ°μ
|
186 |
+
formatted_prompt = f"wbgmsst, 3D, {prompt} ,white background"
|
187 |
+
|
188 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
189 |
+
try:
|
190 |
+
generated_image = pipe(
|
191 |
+
prompt=[formatted_prompt],
|
192 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
193 |
+
num_inference_steps=int(steps),
|
194 |
+
guidance_scale=float(scales),
|
195 |
+
height=int(height),
|
196 |
+
width=int(width),
|
197 |
+
max_sequence_length=256
|
198 |
+
).images[0]
|
199 |
+
|
200 |
+
saved_path = save_image(generated_image)
|
201 |
+
if saved_path is None:
|
202 |
+
print("Warning: Failed to save generated image")
|
203 |
+
|
204 |
+
return generated_image
|
205 |
+
except Exception as e:
|
206 |
+
print(f"Error in image generation: {str(e)}")
|
207 |
+
return None
|
208 |
+
|
209 |
+
def update_seed():
|
210 |
+
return get_random_seed()
|
211 |
+
|
212 |
+
# Click event handlers inside gr.Blocks context
|
213 |
+
generate_btn.click(
|
214 |
+
process_and_save_image,
|
215 |
+
inputs=[height, width, steps, scales, prompt, seed],
|
216 |
+
outputs=output
|
217 |
+
).then(
|
218 |
+
update_seed,
|
219 |
+
outputs=[seed]
|
220 |
+
)
|
221 |
+
|
222 |
+
randomize_seed.click(
|
223 |
+
update_seed,
|
224 |
+
outputs=[seed]
|
225 |
+
)
|
226 |
+
|
227 |
+
if __name__ == "__main__":
|
228 |
+
demo.launch(allowed_paths=[PERSISTENT_DIR])
|