|
import tempfile |
|
import time |
|
from collections.abc import Sequence |
|
from typing import Any, cast |
|
import os |
|
from huggingface_hub import login, hf_hub_download |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import pillow_heif |
|
import spaces |
|
import torch |
|
from gradio_image_annotation import image_annotator |
|
from gradio_imageslider import ImageSlider |
|
from PIL import Image |
|
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml |
|
from refiners.fluxion.utils import no_grad |
|
from refiners.solutions import BoxSegmenter |
|
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor |
|
from diffusers import FluxPipeline |
|
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM |
|
import gc |
|
|
|
from PIL import Image, ImageDraw, ImageFont |
|
from PIL import Image |
|
from gradio_client import Client, handle_file |
|
import uuid |
|
|
|
|
|
def clear_memory(): |
|
"""๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์""" |
|
gc.collect() |
|
try: |
|
if torch.cuda.is_available(): |
|
with torch.cuda.device(0): |
|
torch.cuda.empty_cache() |
|
except: |
|
pass |
|
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
if torch.cuda.is_available(): |
|
try: |
|
with torch.cuda.device(0): |
|
torch.cuda.empty_cache() |
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
except: |
|
print("Warning: Could not configure CUDA settings") |
|
|
|
|
|
model_name = "Helsinki-NLP/opus-mt-ko-en" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu') |
|
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1) |
|
|
|
def translate_to_english(text: str) -> str: |
|
"""ํ๊ธ ํ
์คํธ๋ฅผ ์์ด๋ก ๋ฒ์ญ""" |
|
try: |
|
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text): |
|
translated = translator(text, max_length=128)[0]['translation_text'] |
|
print(f"Translated '{text}' to '{translated}'") |
|
return translated |
|
return text |
|
except Exception as e: |
|
print(f"Translation error: {str(e)}") |
|
return text |
|
|
|
BoundingBox = tuple[int, int, int, int] |
|
|
|
pillow_heif.register_heif_opener() |
|
pillow_heif.register_avif_opener() |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
if HF_TOKEN is None: |
|
raise ValueError("Please set the HF_TOKEN environment variable") |
|
|
|
try: |
|
login(token=HF_TOKEN) |
|
except Exception as e: |
|
raise ValueError(f"Failed to login to Hugging Face: {str(e)}") |
|
|
|
|
|
segmenter = BoxSegmenter(device="cpu") |
|
segmenter.device = device |
|
segmenter.model = segmenter.model.to(device=segmenter.device) |
|
|
|
gd_model_path = "IDEA-Research/grounding-dino-base" |
|
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path) |
|
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32) |
|
gd_model = gd_model.to(device=device) |
|
assert isinstance(gd_model, GroundingDinoForObjectDetection) |
|
|
|
|
|
pipe = FluxPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", |
|
torch_dtype=torch.float16, |
|
use_auth_token=HF_TOKEN |
|
) |
|
pipe.enable_attention_slicing(slice_size="auto") |
|
|
|
|
|
pipe.load_lora_weights( |
|
hf_hub_download( |
|
"ByteDance/Hyper-SD", |
|
"Hyper-FLUX.1-dev-8steps-lora.safetensors", |
|
use_auth_token=HF_TOKEN |
|
) |
|
) |
|
pipe.fuse_lora(lora_scale=0.125) |
|
|
|
|
|
try: |
|
if torch.cuda.is_available(): |
|
pipe = pipe.to("cuda:0") |
|
except Exception as e: |
|
print(f"Warning: Could not move pipeline to CUDA: {str(e)}") |
|
|
|
client = Client("NabeelShar/BiRefNet_for_text_writing") |
|
|
|
class timer: |
|
def __init__(self, method_name="timed process"): |
|
self.method = method_name |
|
def __enter__(self): |
|
self.start = time.time() |
|
print(f"{self.method} starts") |
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
end = time.time() |
|
print(f"{self.method} took {str(round(end - self.start, 2))}s") |
|
|
|
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None: |
|
if not bboxes: |
|
return None |
|
for bbox in bboxes: |
|
assert len(bbox) == 4 |
|
assert all(isinstance(x, int) for x in bbox) |
|
return ( |
|
min(bbox[0] for bbox in bboxes), |
|
min(bbox[1] for bbox in bboxes), |
|
max(bbox[2] for bbox in bboxes), |
|
max(bbox[3] for bbox in bboxes), |
|
) |
|
|
|
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor: |
|
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1) |
|
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1) |
|
|
|
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None: |
|
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device) |
|
with no_grad(): |
|
outputs = gd_model(**inputs) |
|
width, height = img.size |
|
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection( |
|
outputs, |
|
inputs["input_ids"], |
|
target_sizes=[(height, width)], |
|
)[0] |
|
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor) |
|
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height) |
|
return bbox_union(bboxes.numpy().tolist()) |
|
|
|
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image: |
|
assert img.size == mask_img.size |
|
img = img.convert("RGB") |
|
mask_img = mask_img.convert("L") |
|
if defringe: |
|
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0 |
|
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha)) |
|
img = Image.fromarray((foreground * 255).astype("uint8")) |
|
result = Image.new("RGBA", img.size) |
|
result.paste(img, (0, 0), mask_img) |
|
return result |
|
|
|
|
|
def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]: |
|
"""์ด๋ฏธ์ง ํฌ๊ธฐ๋ฅผ 8์ ๋ฐฐ์๋ก ์กฐ์ ํ๋ ํจ์""" |
|
new_width = ((width + 7) // 8) * 8 |
|
new_height = ((height + 7) // 8) * 8 |
|
return new_width, new_height |
|
|
|
def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]: |
|
"""์ ํ๋ ๋น์จ์ ๋ฐ๋ผ ์ด๋ฏธ์ง ํฌ๊ธฐ ๊ณ์ฐ""" |
|
if aspect_ratio == "1:1": |
|
return base_size, base_size |
|
elif aspect_ratio == "16:9": |
|
return base_size * 16 // 9, base_size |
|
elif aspect_ratio == "9:16": |
|
return base_size, base_size * 16 // 9 |
|
elif aspect_ratio == "4:3": |
|
return base_size * 4 // 3, base_size |
|
return base_size, base_size |
|
|
|
@spaces.GPU(duration=20) |
|
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image: |
|
try: |
|
width, height = calculate_dimensions(aspect_ratio) |
|
width, height = adjust_size_to_multiple_of_8(width, height) |
|
|
|
max_size = 768 |
|
if width > max_size or height > max_size: |
|
ratio = max_size / max(width, height) |
|
width = int(width * ratio) |
|
height = int(height * ratio) |
|
width, height = adjust_size_to_multiple_of_8(width, height) |
|
|
|
with timer("Background generation"): |
|
try: |
|
with torch.inference_mode(): |
|
image = pipe( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
num_inference_steps=8, |
|
guidance_scale=4.0 |
|
).images[0] |
|
except Exception as e: |
|
print(f"Pipeline error: {str(e)}") |
|
return Image.new('RGB', (width, height), 'white') |
|
|
|
return image |
|
except Exception as e: |
|
print(f"Background generation error: {str(e)}") |
|
return Image.new('RGB', (512, 512), 'white') |
|
|
|
def create_position_grid(): |
|
return """ |
|
<div class="position-grid" style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; width: 150px; margin: auto;"> |
|
<button class="position-btn" data-pos="top-left">โ</button> |
|
<button class="position-btn" data-pos="top-center">โ</button> |
|
<button class="position-btn" data-pos="top-right">โ</button> |
|
<button class="position-btn" data-pos="middle-left">โ</button> |
|
<button class="position-btn" data-pos="middle-center">โข</button> |
|
<button class="position-btn" data-pos="middle-right">โ</button> |
|
<button class="position-btn" data-pos="bottom-left">โ</button> |
|
<button class="position-btn" data-pos="bottom-center" data-default="true">โ</button> |
|
<button class="position-btn" data-pos="bottom-right">โ</button> |
|
</div> |
|
""" |
|
|
|
def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]: |
|
"""์ค๋ธ์ ํธ์ ์์น ๊ณ์ฐ""" |
|
bg_width, bg_height = bg_size |
|
obj_width, obj_height = obj_size |
|
|
|
positions = { |
|
"top-left": (0, 0), |
|
"top-center": ((bg_width - obj_width) // 2, 0), |
|
"top-right": (bg_width - obj_width, 0), |
|
"middle-left": (0, (bg_height - obj_height) // 2), |
|
"middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2), |
|
"middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2), |
|
"bottom-left": (0, bg_height - obj_height), |
|
"bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height), |
|
"bottom-right": (bg_width - obj_width, bg_height - obj_height) |
|
} |
|
|
|
return positions.get(position, positions["bottom-center"]) |
|
|
|
def resize_object(image: Image.Image, scale_percent: float) -> Image.Image: |
|
"""์ค๋ธ์ ํธ ํฌ๊ธฐ ์กฐ์ """ |
|
width = int(image.width * scale_percent / 100) |
|
height = int(image.height * scale_percent / 100) |
|
return image.resize((width, height), Image.Resampling.LANCZOS) |
|
|
|
def combine_with_background(foreground: Image.Image, background: Image.Image, |
|
position: str = "bottom-center", scale_percent: float = 100) -> Image.Image: |
|
"""์ ๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํฉ์ฑ ํจ์""" |
|
|
|
result = background.convert('RGBA') |
|
|
|
|
|
scaled_foreground = resize_object(foreground, scale_percent) |
|
|
|
|
|
x, y = calculate_object_position(position, result.size, scaled_foreground.size) |
|
|
|
|
|
result.paste(scaled_foreground, (x, y), scaled_foreground) |
|
return result |
|
|
|
@spaces.GPU(duration=30) |
|
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]: |
|
time_log: list[str] = [] |
|
try: |
|
if isinstance(prompt, str): |
|
t0 = time.time() |
|
bbox = gd_detect(img, prompt) |
|
time_log.append(f"detect: {time.time() - t0}") |
|
if not bbox: |
|
print(time_log[0]) |
|
raise gr.Error("No object detected") |
|
else: |
|
bbox = prompt |
|
t0 = time.time() |
|
mask = segmenter(img, bbox) |
|
time_log.append(f"segment: {time.time() - t0}") |
|
return mask, bbox, time_log |
|
except Exception as e: |
|
print(f"GPU process error: {str(e)}") |
|
raise |
|
|
|
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]: |
|
try: |
|
|
|
max_size = 1024 |
|
if img.width > max_size or img.height > max_size: |
|
ratio = max_size / max(img.width, img.height) |
|
new_size = (int(img.width * ratio), int(img.height * ratio)) |
|
img = img.resize(new_size, Image.LANCZOS) |
|
|
|
|
|
try: |
|
if torch.cuda.is_available(): |
|
current_device = torch.cuda.current_device() |
|
with torch.cuda.device(current_device): |
|
torch.cuda.empty_cache() |
|
except Exception as e: |
|
print(f"CUDA memory management failed: {e}") |
|
|
|
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()): |
|
mask, bbox, time_log = _gpu_process(img, prompt) |
|
masked_alpha = apply_mask(img, mask, defringe=True) |
|
|
|
if bg_prompt: |
|
background = generate_background(bg_prompt, aspect_ratio) |
|
combined = background |
|
else: |
|
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha) |
|
|
|
clear_memory() |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp: |
|
combined.save(temp.name) |
|
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True) |
|
except Exception as e: |
|
clear_memory() |
|
print(f"Processing error: {str(e)}") |
|
raise gr.Error(f"Processing failed: {str(e)}") |
|
|
|
def on_change_bbox(prompts: dict[str, Any] | None): |
|
return gr.update(interactive=prompts is not None) |
|
|
|
|
|
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None): |
|
return gr.update(interactive=bool(img and prompt)) |
|
|
|
|
|
|
|
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None, |
|
aspect_ratio: str = "1:1", position: str = "bottom-center", |
|
scale_percent: float = 100) -> tuple[Image.Image, Image.Image]: |
|
try: |
|
if img is None or prompt.strip() == "": |
|
raise gr.Error("Please provide both image and prompt") |
|
|
|
print(f"Processing with position: {position}, scale: {scale_percent}") |
|
|
|
try: |
|
prompt = translate_to_english(prompt) |
|
if bg_prompt: |
|
bg_prompt = translate_to_english(bg_prompt) |
|
except Exception as e: |
|
print(f"Translation error (continuing with original text): {str(e)}") |
|
|
|
results, _ = _process(img, prompt, bg_prompt, aspect_ratio) |
|
|
|
if bg_prompt: |
|
try: |
|
combined = combine_with_background( |
|
foreground=results[2], |
|
background=results[1], |
|
position=position, |
|
scale_percent=scale_percent |
|
) |
|
print(f"Combined image created with position: {position}") |
|
return combined, results[2] |
|
except Exception as e: |
|
print(f"Combination error: {str(e)}") |
|
return results[1], results[2] |
|
|
|
return results[1], results[2] |
|
except Exception as e: |
|
print(f"Error in process_prompt: {str(e)}") |
|
raise gr.Error(str(e)) |
|
finally: |
|
clear_memory() |
|
|
|
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]: |
|
try: |
|
if img is None or box_input.strip() == "": |
|
raise gr.Error("Please provide both image and bounding box coordinates") |
|
|
|
try: |
|
coords = eval(box_input) |
|
if not isinstance(coords, list) or len(coords) != 4: |
|
raise ValueError("Invalid box format") |
|
bbox = tuple(int(x) for x in coords) |
|
except: |
|
raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]") |
|
|
|
|
|
results, _ = _process(img, bbox) |
|
|
|
|
|
return results[1], results[2] |
|
except Exception as e: |
|
raise gr.Error(str(e)) |
|
|
|
|
|
def update_process_button(img, prompt): |
|
return gr.update( |
|
interactive=bool(img and prompt), |
|
variant="primary" if bool(img and prompt) else "secondary" |
|
) |
|
|
|
def update_box_button(img, box_input): |
|
try: |
|
if img and box_input: |
|
coords = eval(box_input) |
|
if isinstance(coords, list) and len(coords) == 4: |
|
return gr.update(interactive=True, variant="primary") |
|
return gr.update(interactive=False, variant="secondary") |
|
except: |
|
return gr.update(interactive=False, variant="secondary") |
|
|
|
|
|
|
|
css = """ |
|
footer {display: none} |
|
.main-title { |
|
text-align: center; |
|
margin: 2em 0; |
|
padding: 1em; |
|
background: #f7f7f7; |
|
border-radius: 10px; |
|
} |
|
.main-title h1 { |
|
color: #2196F3; |
|
font-size: 2.5em; |
|
margin-bottom: 0.5em; |
|
} |
|
.main-title p { |
|
color: #666; |
|
font-size: 1.2em; |
|
} |
|
.container { |
|
max-width: 1200px; |
|
margin: auto; |
|
padding: 20px; |
|
} |
|
.tabs { |
|
margin-top: 1em; |
|
} |
|
.input-group { |
|
background: white; |
|
padding: 1em; |
|
border-radius: 8px; |
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1); |
|
} |
|
.output-group { |
|
background: white; |
|
padding: 1em; |
|
border-radius: 8px; |
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1); |
|
} |
|
button.primary { |
|
background: #2196F3; |
|
border: none; |
|
color: white; |
|
padding: 0.5em 1em; |
|
border-radius: 4px; |
|
cursor: pointer; |
|
transition: background 0.3s ease; |
|
} |
|
button.primary:hover { |
|
background: #1976D2; |
|
} |
|
.position-btn { |
|
transition: all 0.3s ease; |
|
} |
|
.position-btn:hover { |
|
background-color: #e3f2fd; |
|
} |
|
.position-btn.selected { |
|
background-color: #2196F3; |
|
color: white; |
|
} |
|
""" |
|
|
|
|
|
|
|
def add_text_with_stroke(draw, text, x, y, font, text_color, stroke_width): |
|
"""Helper function to draw text with stroke""" |
|
|
|
for adj_x in range(-stroke_width, stroke_width + 1): |
|
for adj_y in range(-stroke_width, stroke_width + 1): |
|
draw.text((x + adj_x, y + adj_y), text, font=font, fill=text_color) |
|
|
|
def remove_background(image): |
|
|
|
filename = f"image_{uuid.uuid4()}.png" |
|
image.save(filename) |
|
|
|
result = client.predict(images=handle_file(filename), api_name="/image") |
|
return Image.open(result[0]) |
|
|
|
def superimpose(image_with_text, overlay_image): |
|
|
|
overlay_image = overlay_image.convert("RGBA") |
|
|
|
image_with_text.paste(overlay_image, (0, 0), overlay_image) |
|
|
|
|
|
return image_with_text |
|
|
|
def add_text_to_image( |
|
input_image, |
|
text, |
|
font_size, |
|
color, |
|
opacity, |
|
x_position, |
|
y_position, |
|
thickness, |
|
text_position_type, |
|
font_choice |
|
): |
|
""" |
|
Add text to an image with customizable properties |
|
""" |
|
try: |
|
if input_image is None: |
|
return None |
|
|
|
|
|
if not isinstance(input_image, Image.Image): |
|
if isinstance(input_image, np.ndarray): |
|
image = Image.fromarray(input_image) |
|
else: |
|
raise ValueError("Unsupported image type") |
|
else: |
|
image = input_image.copy() |
|
|
|
|
|
if image.mode != 'RGBA': |
|
image = image.convert('RGBA') |
|
|
|
|
|
if text_position_type == "Text Behind Image": |
|
|
|
overlay_image = remove_background(image) |
|
|
|
|
|
txt_overlay = Image.new('RGBA', image.size, (255, 255, 255, 0)) |
|
draw = ImageDraw.Draw(txt_overlay) |
|
|
|
|
|
font_files = { |
|
"Default": "DejaVuSans.ttf", |
|
"Korean Regular": "ko-Regular.ttf", |
|
"Korean Son": "ko-son.ttf" |
|
} |
|
|
|
try: |
|
font_file = font_files.get(font_choice, "DejaVuSans.ttf") |
|
font = ImageFont.truetype(font_file, int(font_size)) |
|
except Exception as e: |
|
print(f"Font loading error ({font_choice}): {str(e)}") |
|
try: |
|
font = ImageFont.truetype("arial.ttf", int(font_size)) |
|
except: |
|
print("Using default font") |
|
font = ImageFont.load_default() |
|
|
|
|
|
color_map = { |
|
'White': (255, 255, 255), |
|
'Black': (0, 0, 0), |
|
'Red': (255, 0, 0), |
|
'Green': (0, 255, 0), |
|
'Blue': (0, 0, 255), |
|
'Yellow': (255, 255, 0), |
|
'Purple': (128, 0, 128) |
|
} |
|
rgb_color = color_map.get(color, (255, 255, 255)) |
|
|
|
|
|
text_bbox = draw.textbbox((0, 0), text, font=font) |
|
text_width = text_bbox[2] - text_bbox[0] |
|
text_height = text_bbox[3] - text_bbox[1] |
|
|
|
|
|
actual_x = int((image.width - text_width) * (x_position / 100)) |
|
actual_y = int((image.height - text_height) * (y_position / 100)) |
|
|
|
|
|
text_color = (*rgb_color, int(opacity)) |
|
|
|
|
|
add_text_with_stroke( |
|
draw, |
|
text, |
|
actual_x, |
|
actual_y, |
|
font, |
|
text_color, |
|
int(thickness) |
|
) |
|
|
|
if text_position_type == "Text Behind Image": |
|
|
|
output_image = Image.alpha_composite(image, txt_overlay) |
|
output_image = superimpose(output_image, overlay_image) |
|
else: |
|
|
|
output_image = Image.alpha_composite(image, txt_overlay) |
|
|
|
|
|
output_image = output_image.convert('RGB') |
|
|
|
return output_image |
|
|
|
except Exception as e: |
|
print(f"Error in add_text_to_image: {str(e)}") |
|
return input_image |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: |
|
gr.HTML(""" |
|
<div class="main-title"> |
|
<h1>๐จGiniGen Canvas-o3</h1> |
|
<p>Remove background of specified objects, generate new backgrounds, and insert text over or behind images with prompts.</p> |
|
</div> |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
input_image = gr.Image( |
|
type="pil", |
|
label="Upload Image", |
|
interactive=True |
|
) |
|
text_prompt = gr.Textbox( |
|
label="Object to Extract", |
|
placeholder="Enter what you want to extract...", |
|
interactive=True |
|
) |
|
with gr.Row(): |
|
bg_prompt = gr.Textbox( |
|
label="Background Prompt (optional)", |
|
placeholder="Describe the background...", |
|
interactive=True, |
|
scale=3 |
|
) |
|
aspect_ratio = gr.Dropdown( |
|
choices=["1:1", "16:9", "9:16", "4:3"], |
|
value="1:1", |
|
label="Aspect Ratio", |
|
interactive=True, |
|
visible=True, |
|
scale=1 |
|
) |
|
|
|
with gr.Row(visible=False) as object_controls: |
|
with gr.Column(scale=1): |
|
with gr.Row(): |
|
position = gr.State(value="bottom-center") |
|
btn_top_left = gr.Button("โ") |
|
btn_top_center = gr.Button("โ") |
|
btn_top_right = gr.Button("โ") |
|
with gr.Row(): |
|
btn_middle_left = gr.Button("โ") |
|
btn_middle_center = gr.Button("โข") |
|
btn_middle_right = gr.Button("โ") |
|
with gr.Row(): |
|
btn_bottom_left = gr.Button("โ") |
|
btn_bottom_center = gr.Button("โ") |
|
btn_bottom_right = gr.Button("โ") |
|
with gr.Column(scale=1): |
|
scale_slider = gr.Slider( |
|
minimum=10, |
|
maximum=200, |
|
value=50, |
|
step=5, |
|
label="Object Size (%)" |
|
) |
|
|
|
process_btn = gr.Button( |
|
"Process", |
|
variant="primary", |
|
interactive=False |
|
) |
|
|
|
with gr.Column(scale=1): |
|
with gr.Tab("Result"): |
|
combined_image = gr.Image( |
|
label="Combined Result", |
|
show_download_button=True, |
|
type="pil", |
|
height=512 |
|
) |
|
|
|
|
|
with gr.Group(): |
|
gr.Markdown("### Add Text to Image") |
|
with gr.Row(): |
|
text_input = gr.Textbox( |
|
label="Text Content", |
|
placeholder="Enter text to add to image..." |
|
) |
|
text_position_type = gr.Radio( |
|
choices=["Text Over Image", "Text Behind Image"], |
|
value="Text Over Image", |
|
label="Text Position Type", |
|
interactive=True |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
|
|
font_choice = gr.Dropdown( |
|
choices=["Default", "Korean Regular", "Korean Son"], |
|
value="Default", |
|
label="Font Selection", |
|
interactive=True |
|
) |
|
font_size = gr.Slider( |
|
minimum=10, |
|
maximum=200, |
|
value=40, |
|
step=5, |
|
label="Font Size" |
|
) |
|
color_dropdown = gr.Dropdown( |
|
choices=["White", "Black", "Red", "Green", "Blue", "Yellow", "Purple"], |
|
value="White", |
|
label="Text Color" |
|
) |
|
thickness = gr.Slider( |
|
minimum=0, |
|
maximum=10, |
|
value=1, |
|
step=1, |
|
label="Text Thickness" |
|
) |
|
with gr.Column(scale=1): |
|
opacity_slider = gr.Slider( |
|
minimum=0, |
|
maximum=255, |
|
value=255, |
|
step=1, |
|
label="Opacity" |
|
) |
|
x_position = gr.Slider( |
|
minimum=0, |
|
maximum=100, |
|
value=50, |
|
step=1, |
|
label="X Position (%)" |
|
) |
|
y_position = gr.Slider( |
|
minimum=0, |
|
maximum=100, |
|
value=50, |
|
step=1, |
|
label="Y Position (%)" |
|
) |
|
add_text_btn = gr.Button("Apply Text", variant="primary") |
|
|
|
with gr.Row(): |
|
extracted_image = gr.Image( |
|
label="Extracted Object", |
|
show_download_button=True, |
|
type="pil", |
|
height=256 |
|
) |
|
|
|
|
|
def update_position(new_position): |
|
return new_position |
|
|
|
btn_top_left.click(fn=lambda: update_position("top-left"), outputs=position) |
|
btn_top_center.click(fn=lambda: update_position("top-center"), outputs=position) |
|
btn_top_right.click(fn=lambda: update_position("top-right"), outputs=position) |
|
btn_middle_left.click(fn=lambda: update_position("middle-left"), outputs=position) |
|
btn_middle_center.click(fn=lambda: update_position("middle-center"), outputs=position) |
|
btn_middle_right.click(fn=lambda: update_position("middle-right"), outputs=position) |
|
btn_bottom_left.click(fn=lambda: update_position("bottom-left"), outputs=position) |
|
btn_bottom_center.click(fn=lambda: update_position("bottom-center"), outputs=position) |
|
btn_bottom_right.click(fn=lambda: update_position("bottom-right"), outputs=position) |
|
|
|
|
|
input_image.change( |
|
fn=update_process_button, |
|
inputs=[input_image, text_prompt], |
|
outputs=process_btn, |
|
queue=False |
|
) |
|
|
|
text_prompt.change( |
|
fn=update_process_button, |
|
inputs=[input_image, text_prompt], |
|
outputs=process_btn, |
|
queue=False |
|
) |
|
|
|
def update_controls(bg_prompt): |
|
"""๋ฐฐ๊ฒฝ ํ๋กฌํํธ ์
๋ ฅ ์ฌ๋ถ์ ๋ฐ๋ผ ์ปจํธ๋กค ํ์ ์
๋ฐ์ดํธ""" |
|
is_visible = bool(bg_prompt) |
|
return [ |
|
gr.update(visible=is_visible), |
|
gr.update(visible=is_visible), |
|
] |
|
|
|
bg_prompt.change( |
|
fn=update_controls, |
|
inputs=bg_prompt, |
|
outputs=[aspect_ratio, object_controls], |
|
queue=False |
|
) |
|
|
|
process_btn.click( |
|
fn=process_prompt, |
|
inputs=[ |
|
input_image, |
|
text_prompt, |
|
bg_prompt, |
|
aspect_ratio, |
|
position, |
|
scale_slider |
|
], |
|
outputs=[combined_image, extracted_image], |
|
queue=True |
|
) |
|
|
|
|
|
add_text_btn.click( |
|
fn=add_text_to_image, |
|
inputs=[ |
|
combined_image, |
|
text_input, |
|
font_size, |
|
color_dropdown, |
|
opacity_slider, |
|
x_position, |
|
y_position, |
|
thickness, |
|
text_position_type, |
|
font_choice |
|
], |
|
outputs=combined_image |
|
) |
|
|
|
demo.queue(max_size=5) |
|
demo.launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
share=False, |
|
max_threads=2 |
|
) |