# -*- coding: utf-8 -*- """wiki_chat.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1P5rJeCXRSsDJw_1ksnHmodH6ng2Ot5NW """ # !pip install gradio # !pip install -U sentence-transformers # !pip install datasets from azure_utils import AzureVoiceData from polly_utils import PollyVoiceData, NEURAL_ENGINE from langchain.prompts import PromptTemplate from openai.error import AuthenticationError, InvalidRequestError, RateLimitError import re import sys from io import StringIO from threading import Lock from langchain.llms import OpenAI from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.agents import tool, load_tools, initialize_agent from langchain import ConversationChain, LLMChain import whisper import warnings import boto3 import datetime from typing import Optional, Tuple from contextlib import closing # Console to variable import io import requests import os import gradio as gr from sentence_transformers import SentenceTransformer, CrossEncoder, util from torch import tensor as torch_tensor from datasets import load_dataset """# import models""" bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1') bi_encoder.max_seq_length = 256 # Truncate long passages to 256 tokens # The bi-encoder will retrieve top_k documents. We use a cross-encoder, to re-rank the results list to improve the quality cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') """# import datasets""" dataset = load_dataset("gfhayworth/wiki_mini", split='train') mypassages = list(dataset.to_pandas()['psg']) dataset_embed = load_dataset("gfhayworth/wiki_mini_embed", split='train') dataset_embed_pd = dataset_embed.to_pandas() mycorpus_embeddings = torch_tensor(dataset_embed_pd.values) def search(query, top_k=20, top_n=1): question_embedding = bi_encoder.encode(query, convert_to_tensor=True) question_embedding = question_embedding # .cuda() hits = util.semantic_search( question_embedding, mycorpus_embeddings, top_k=top_k) hits = hits[0] # Get the hits for the first query ##### Re-Ranking ##### cross_inp = [[query, mypassages[hit['corpus_id']]] for hit in hits] cross_scores = cross_encoder.predict(cross_inp) # Sort results by the cross-encoder scores for idx in range(len(cross_scores)): hits[idx]['cross-score'] = cross_scores[idx] hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) predictions = hits[:top_n] return predictions # for hit in hits[0:3]: # print("\t{:.3f}\t{}".format(hit['cross-score'], mypassages[hit['corpus_id']].replace("\n", " "))) def get_text(qry): predictions = search(qry) prediction_text = [] for hit in predictions: prediction_text.append("{}".format(mypassages[hit['corpus_id']])) return prediction_text @tool("mysearch", return_direct=True) def prt_rslt(query: str) -> str: rslt = get_text(qry) return '\n'.join(rslt) # prt_rslt("who is the best rapper in the world?") # """# chat example""" # def chat(message, history): # history = history or [] # message = message.lower() # responses = get_text(message) # for response in responses: # history.append((message, response)) # return history, history # with gr.Blocks(css=CSS) as demo: # history_state = gr.State() # gr.Markdown('# WikiBot') # title = 'Wikipedia Chatbot' # description = 'chatbot with search on Wikipedia' # with gr.Row(): # chatbot = gr.Chatbot() # with gr.Row(): # message = gr.Textbox(label='Input your question here:', # placeholder='How many countries are in Europe?', # lines=1) # submit = gr.Button(value='Send', # variant='secondary').style(full_width=False) # submit.click(chat, # inputs=[message, history_state], # outputs=[chatbot, history_state]) # gr.Examples( # examples=["How many countries are in Europe?", # "Was Roman Emperor Constantine I a Christian?", # "Who is the best rapper in the world?"], # inputs=message # ) # demo.launch() news_api_key = os.environ["NEWS_API_KEY"] tmdb_bearer_token = os.environ["TMDB_BEARER_TOKEN"] TOOLS_LIST = ['serpapi', 'wolfram-alpha', 'pal-math', 'pal-colored-objects', 'news-api', 'tmdb-api', 'open-meteo-api'] # 'google-search' TOOLS_DEFAULT_LIST = ['mysearch', 'serpapi', 'pal-math'] BUG_FOUND_MSG = "Congratulations, you've found a bug in this application!" AUTH_ERR_MSG = "Please paste your OpenAI key from openai.com to use this application. It is not necessary to hit a button or key after pasting it." MAX_TOKENS = 512 TEMPERATURE = 0 LOOPING_TALKING_HEAD = "videos/humancare.mp4" TALKING_HEAD_WIDTH = "192" MAX_TALKING_HEAD_TEXT_LENGTH = 155 # Pertains to Express-inator functionality NUM_WORDS_DEFAULT = 0 MAX_WORDS = 400 FORMALITY_DEFAULT = "N/A" TEMPERATURE_DEFAULT = 0.5 EMOTION_DEFAULT = "N/A" LANG_LEVEL_DEFAULT = "N/A" TRANSLATE_TO_DEFAULT = "N/A" LITERARY_STYLE_DEFAULT = "N/A" PROMPT_TEMPLATE = PromptTemplate( input_variables=["original_words", "num_words", "formality", "emotions", "lang_level", "translate_to", "literary_style"], template="Restate {num_words}{formality}{emotions}{lang_level}{translate_to}{literary_style}the following: \n{original_words}\n", ) POLLY_VOICE_DATA = PollyVoiceData() AZURE_VOICE_DATA = AzureVoiceData() VOICE_GENDER = 'Female' # "Male" # Pertains to WHISPER functionality WHISPER_DETECT_LANG = "Detect language" # UNCOMMENT TO USE WHISPER warnings.filterwarnings("ignore") WHISPER_MODEL = whisper.load_model("tiny") print("WHISPER_MODEL", WHISPER_MODEL) # gradio settings # css CSS = ".gradio-container {background-color: lightgray}" # placeholder for chat text input PLACEHOLDER = "What is my plan benefit?", # example questions EXAMPLES = ["How many people live in Canada?", "What is 2 to the 30th power?", "If x+y=10 and x-y=4, what are x and y?", "How much did it rain in SF today?", "Get me information about the movie 'Avatar'", "What are the top tech headlines in the US?", "On the desk, you see two blue booklets, two purple booklets, and two yellow pairs of sunglasses - " "if I remove all the pairs of sunglasses from the desk, how many purple items remain on it?"] AUTHORS = """

This application, developed by Greg Hayworth, Srikanth Tangelloju, Lincoln Snyder, Michal Piekarczyk, and Xingde Jiang, demonstrates a conversational agent implemented with OpenAI GPT-3.5 and LangChain. When necessary, it leverages tools for complex math, searching the internet, and accessing news and weather. Uses talking heads from Ex-Human. For faster inference without waiting in queue, you may duplicate the space.

""" # UNCOMMENT TO USE WHISPER def transcribe(aud_inp, whisper_lang): if aud_inp is None: return "" aud = whisper.load_audio(aud_inp) aud = whisper.pad_or_trim(aud) mel = whisper.log_mel_spectrogram(aud).to(WHISPER_MODEL.device) _, probs = WHISPER_MODEL.detect_language(mel) options = whisper.DecodingOptions() if whisper_lang != WHISPER_DETECT_LANG: whisper_lang_code = POLLY_VOICE_DATA.get_whisper_lang_code( whisper_lang) options = whisper.DecodingOptions(language=whisper_lang_code) result = whisper.decode(WHISPER_MODEL, mel, options) print("result.text", result.text) result_text = "" if result and result.text: result_text = result.text return result_text # Pertains to Express-inator functionality def transform_text(desc, express_chain, num_words, formality, anticipation_level, joy_level, trust_level, fear_level, surprise_level, sadness_level, disgust_level, anger_level, lang_level, translate_to, literary_style): num_words_prompt = "" if num_words and int(num_words) != 0: num_words_prompt = "using up to " + str(num_words) + " words, " # Change some arguments to lower case formality = formality.lower() anticipation_level = anticipation_level.lower() joy_level = joy_level.lower() trust_level = trust_level.lower() fear_level = fear_level.lower() surprise_level = surprise_level.lower() sadness_level = sadness_level.lower() disgust_level = disgust_level.lower() anger_level = anger_level.lower() formality_str = "" if formality != "n/a": formality_str = "in a " + formality + " manner, " # put all emotions into a list emotions = [] if anticipation_level != "n/a": emotions.append(anticipation_level) if joy_level != "n/a": emotions.append(joy_level) if trust_level != "n/a": emotions.append(trust_level) if fear_level != "n/a": emotions.append(fear_level) if surprise_level != "n/a": emotions.append(surprise_level) if sadness_level != "n/a": emotions.append(sadness_level) if disgust_level != "n/a": emotions.append(disgust_level) if anger_level != "n/a": emotions.append(anger_level) emotions_str = "" if len(emotions) > 0: if len(emotions) == 1: emotions_str = "with emotion of " + emotions[0] + ", " else: emotions_str = "with emotions of " + \ ", ".join(emotions[:-1]) + " and " + emotions[-1] + ", " lang_level_str = "" if lang_level != LANG_LEVEL_DEFAULT: lang_level_str = "at a " + lang_level + \ " level, " if translate_to == TRANSLATE_TO_DEFAULT else "" translate_to_str = "" if translate_to != TRANSLATE_TO_DEFAULT: translate_to_str = "translated to " + \ ("" if lang_level == TRANSLATE_TO_DEFAULT else lang_level + " level ") + translate_to + ", " literary_style_str = "" if literary_style != LITERARY_STYLE_DEFAULT: if literary_style == "Prose": literary_style_str = "as prose, " elif literary_style == "Summary": literary_style_str = "as a summary, " elif literary_style == "Outline": literary_style_str = "as an outline numbers and lower case letters, " elif literary_style == "Bullets": literary_style_str = "as bullet points using bullets, " elif literary_style == "Poetry": literary_style_str = "as a poem, " elif literary_style == "Haiku": literary_style_str = "as a haiku, " elif literary_style == "Limerick": literary_style_str = "as a limerick, " elif literary_style == "Joke": literary_style_str = "as a very funny joke with a setup and punchline, " elif literary_style == "Knock-knock": literary_style_str = "as a very funny knock-knock joke, " formatted_prompt = PROMPT_TEMPLATE.format( original_words=desc, num_words=num_words_prompt, formality=formality_str, emotions=emotions_str, lang_level=lang_level_str, translate_to=translate_to_str, literary_style=literary_style_str ) trans_instr = num_words_prompt + formality_str + emotions_str + \ lang_level_str + translate_to_str + literary_style_str if express_chain and len(trans_instr.strip()) > 0: generated_text = express_chain.run( {'original_words': desc, 'num_words': num_words_prompt, 'formality': formality_str, 'emotions': emotions_str, 'lang_level': lang_level_str, 'translate_to': translate_to_str, 'literary_style': literary_style_str}).strip() else: print("Not transforming text") generated_text = desc # replace all newlines with
in generated_text generated_text = generated_text.replace("\n", "\n\n") prompt_plus_generated = "GPT prompt: " + \ formatted_prompt + "\n\n" + generated_text print("\n==== date/time: " + str(datetime.datetime.now() - datetime.timedelta(hours=5)) + " ====") print("prompt_plus_generated: " + prompt_plus_generated) return generated_text def load_chain(tools_list, llm): chain = None express_chain = None if llm: print("\ntools_list", tools_list) tool_names = tools_list tools = load_tools(tool_names, llm=llm, news_api_key=news_api_key, tmdb_bearer_token=tmdb_bearer_token) memory = ConversationBufferMemory(memory_key="chat_history") chain = initialize_agent( tools, llm, agent="conversational-react-description", verbose=True, memory=memory) express_chain = LLMChain(llm=llm, prompt=PROMPT_TEMPLATE, verbose=True) return chain, express_chain def set_openai_api_key(api_key): """Set the api key and return chain. If no api_key, then None is returned. """ if api_key and api_key.startswith("sk-") and len(api_key) > 50: os.environ["OPENAI_API_KEY"] = api_key llm = OpenAI(temperature=TEMPERATURE, max_tokens=MAX_TOKENS) chain, express_chain = load_chain(TOOLS_DEFAULT_LIST, llm) os.environ["OPENAI_API_KEY"] = "" return chain, express_chain, llm return None, None, None def run_chain(chain, inp, capture_hidden_text): output = "" hidden_text = None if capture_hidden_text: error_msg = None tmp = sys.stdout hidden_text_io = StringIO() sys.stdout = hidden_text_io try: output = chain.run(input=inp) except AuthenticationError as ae: error_msg = AUTH_ERR_MSG except RateLimitError as rle: error_msg = "\n\nRateLimitError: " + str(rle) except ValueError as ve: error_msg = "\n\nValueError: " + str(ve) except InvalidRequestError as ire: error_msg = "\n\nInvalidRequestError: " + str(ire) except Exception as e: error_msg = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e) sys.stdout = tmp hidden_text = hidden_text_io.getvalue() # remove escape characters from hidden_text hidden_text = re.sub(r'\x1b[^m]*m', '', hidden_text) # remove "Entering new AgentExecutor chain..." from hidden_text hidden_text = re.sub( r"Entering new AgentExecutor chain...\n", "", hidden_text) # remove "Finished chain." from hidden_text hidden_text = re.sub(r"Finished chain.", "", hidden_text) # Add newline after "Thought:" "Action:" "Observation:" "Input:" and "AI:" hidden_text = re.sub(r"Thought:", "\n\nThought:", hidden_text) hidden_text = re.sub(r"Action:", "\n\nAction:", hidden_text) hidden_text = re.sub(r"Observation:", "\n\nObservation:", hidden_text) hidden_text = re.sub(r"Input:", "\n\nInput:", hidden_text) hidden_text = re.sub(r"AI:", "\n\nAI:", hidden_text) if error_msg: hidden_text += error_msg print("hidden_text: ", hidden_text) else: try: output = chain.run(input=inp) except AuthenticationError as ae: output = AUTH_ERR_MSG except RateLimitError as rle: output = "\n\nRateLimitError: " + str(rle) except ValueError as ve: output = "\n\nValueError: " + str(ve) except InvalidRequestError as ire: output = "\n\nInvalidRequestError: " + str(ire) except Exception as e: output = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e) return output, hidden_text class ChatWrapper: def __init__(self): self.lock = Lock() def __call__( self, api_key: str, inp: str, history: Optional[Tuple[str, str]], chain: Optional[ConversationChain], trace_chain: bool, speak_text: bool, talking_head: bool, monologue: bool, express_chain: Optional[LLMChain], num_words, formality, anticipation_level, joy_level, trust_level, fear_level, surprise_level, sadness_level, disgust_level, anger_level, lang_level, translate_to, literary_style ): """Execute the chat functionality.""" self.lock.acquire() try: print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") print("inp: " + inp) print("trace_chain: ", trace_chain) print("speak_text: ", speak_text) print("talking_head: ", talking_head) print("monologue: ", monologue) history = history or [] # If chain is None, that is because no API key was provided. output = "Please paste your OpenAI key from openai.com to use this application. It is not necessary to hit a button or " \ "key after pasting it." hidden_text = output if chain and chain != "": # Set OpenAI key import openai openai.api_key = api_key if not monologue: output, hidden_text = run_chain( chain, inp, capture_hidden_text=trace_chain) else: output, hidden_text = inp, None output = transform_text(output, express_chain, num_words, formality, anticipation_level, joy_level, trust_level, fear_level, surprise_level, sadness_level, disgust_level, anger_level, lang_level, translate_to, literary_style) text_to_display = output if trace_chain: text_to_display = hidden_text + "\n\n" + output history.append((inp, text_to_display)) html_video, temp_file, html_audio, temp_aud_file = None, None, None, None if speak_text: if talking_head: if len(output) <= MAX_TALKING_HEAD_TEXT_LENGTH: html_video, temp_file = do_html_video_speak( output, translate_to) else: temp_file = LOOPING_TALKING_HEAD html_video = create_html_video( temp_file, TALKING_HEAD_WIDTH) html_audio, temp_aud_file = do_html_audio_speak( output, translate_to) else: html_audio, temp_aud_file = do_html_audio_speak( output, translate_to) else: if talking_head: temp_file = LOOPING_TALKING_HEAD html_video = create_html_video( temp_file, TALKING_HEAD_WIDTH) else: # html_audio, temp_aud_file = do_html_audio_speak(output, translate_to) # html_video = create_html_video(temp_file, "128") pass except Exception as e: raise e finally: self.lock.release() return history, history, html_video, temp_file, html_audio, temp_aud_file, "" # return history, history, html_audio, temp_aud_file, "" chat = ChatWrapper() def do_html_audio_speak(words_to_speak, polly_language): polly_client = boto3.Session( aws_access_key_id=os.environ["AWS_ACCESS_KEY_ID"], aws_secret_access_key=os.environ["AWS_SECRET_ACCESS_KEY"], region_name=os.environ["AWS_DEFAULT_REGION"] ).client('polly') voice_id, language_code, engine = POLLY_VOICE_DATA.get_voice( polly_language, VOICE_GENDER) if not voice_id: voice_id = "Joanna" # voice_id = "Matthew" language_code = "en-US" engine = NEURAL_ENGINE response = polly_client.synthesize_speech( Text=words_to_speak, OutputFormat='mp3', VoiceId=voice_id, LanguageCode=language_code, Engine=engine ) html_audio = '
no audio
' # Save the audio stream returned by Amazon Polly on Lambda's temp directory if "AudioStream" in response: with closing(response["AudioStream"]) as stream: # output = os.path.join("/tmp/", "speech.mp3") try: with open('audios/tempfile.mp3', 'wb') as f: f.write(stream.read()) temp_aud_file = gr.File("audios/tempfile.mp3") temp_aud_file_url = "/file=" + temp_aud_file.value['name'] html_audio = f'' except IOError as error: # Could not write to file, exit gracefully print(error) return None, None else: # The response didn't contain audio data, exit gracefully print("Could not stream audio") return None, None return html_audio, "audios/tempfile.mp3" def create_html_video(file_name, width): temp_file_url = "/file=" + tmp_file.value['name'] html_video = f'' return html_video def do_html_video_speak(words_to_speak, azure_language): azure_voice = AZURE_VOICE_DATA.get_voice(azure_language, VOICE_GENDER) if not azure_voice: azure_voice = "en-US-ChristopherNeural" headers = {"Authorization": f"Bearer {os.environ['EXHUMAN_API_KEY']}"} body = { 'bot_name': 'humancare', 'bot_response': words_to_speak, 'azure_voice': azure_voice, 'azure_style': 'friendly', 'animation_pipeline': 'high_speed', } api_endpoint = "https://api.exh.ai/animations/v1/generate_lipsync" res = requests.post(api_endpoint, json=body, headers=headers) print("res.status_code: ", res.status_code) html_video = '
no video
' if isinstance(res.content, bytes): response_stream = io.BytesIO(res.content) print("len(res.content)): ", len(res.content)) with open('videos/tempfile.mp4', 'wb') as f: f.write(response_stream.read()) temp_file = gr.File("videos/tempfile.mp4") temp_file_url = "/file=" + temp_file.value['name'] html_video = f'' else: print('video url unknown') return html_video, "videos/tempfile.mp4" def update_selected_tools(widget, state, llm): if widget: state = widget chain, express_chain = load_chain(state, llm) return state, llm, chain, express_chain def update_talking_head(widget, state): if widget: state = widget video_html_talking_head = create_html_video( LOOPING_TALKING_HEAD, TALKING_HEAD_WIDTH) return state, video_html_talking_head else: # return state, create_html_video(LOOPING_TALKING_HEAD, "32") return None, "
"


def update_foo(widget, state):
    if widget:
        state = widget
        return state


with gr.Blocks(css=CSS) as block:
    llm_state = gr.State()
    history_state = gr.State()
    chain_state = gr.State()
    express_chain_state = gr.State()
    tools_list_state = gr.State(TOOLS_DEFAULT_LIST)
    trace_chain_state = gr.State(False)
    speak_text_state = gr.State(False)
    talking_head_state = gr.State(True)
    # Takes the input and repeats it back to the user, optionally transforming it.
    monologue_state = gr.State(False)

    # Pertains to Express-inator functionality
    num_words_state = gr.State(NUM_WORDS_DEFAULT)
    formality_state = gr.State(FORMALITY_DEFAULT)
    anticipation_level_state = gr.State(EMOTION_DEFAULT)
    joy_level_state = gr.State(EMOTION_DEFAULT)
    trust_level_state = gr.State(EMOTION_DEFAULT)
    fear_level_state = gr.State(EMOTION_DEFAULT)
    surprise_level_state = gr.State(EMOTION_DEFAULT)
    sadness_level_state = gr.State(EMOTION_DEFAULT)
    disgust_level_state = gr.State(EMOTION_DEFAULT)
    anger_level_state = gr.State(EMOTION_DEFAULT)
    lang_level_state = gr.State(LANG_LEVEL_DEFAULT)
    translate_to_state = gr.State(TRANSLATE_TO_DEFAULT)
    literary_style_state = gr.State(LITERARY_STYLE_DEFAULT)

    # Pertains to WHISPER functionality
    whisper_lang_state = gr.State(WHISPER_DETECT_LANG)

    with gr.Tab("Chat"):
        with gr.Row():
            # with gr.Column():
            #     gr.HTML(
            #         """
GPT + WolframAlpha + Whisper
#

New feature in Translate to: Choose Language level (e.g. for conversation practice or explain like I'm five)

""") openai_api_key_textbox = gr.Textbox(placeholder="Paste your OpenAI API key (sk-...)", show_label=False, lines=1, type='password') with gr.Row(): with gr.Column(scale=1, min_width=TALKING_HEAD_WIDTH, visible=True): speak_text_cb = gr.Checkbox(label="Enable speech", value=False) speak_text_cb.change(update_foo, inputs=[speak_text_cb, speak_text_state], outputs=[speak_text_state]) my_file = gr.File(label="Upload a file", type="file", visible=False) tmp_file = gr.File(LOOPING_TALKING_HEAD, visible=False) # tmp_file_url = "/file=" + tmp_file.value['name'] htm_video = create_html_video( LOOPING_TALKING_HEAD, TALKING_HEAD_WIDTH) video_html = gr.HTML(htm_video) # my_aud_file = gr.File(label="Audio file", type="file", visible=True) tmp_aud_file = gr.File("audios/tempfile.mp3", visible=False) tmp_aud_file_url = "/file=" + tmp_aud_file.value['name'] htm_audio = f'' audio_html = gr.HTML(htm_audio) with gr.Column(scale=7): chatbot = gr.Chatbot() with gr.Row(): message = gr.Textbox(label="What's on your mind??", placeholder=PLACEHOLDER, lines=1) submit = gr.Button(value="Send", variant="secondary").style( full_width=False) # UNCOMMENT TO USE WHISPER with gr.Row(): audio_comp = gr.Microphone(source="microphone", type="filepath", label="Just say it!", interactive=True, streaming=False) audio_comp.change(transcribe, inputs=[ audio_comp, whisper_lang_state], outputs=[message]) gr.Examples( examples=EXAMPLES, inputs=message ) with gr.Tab("Settings"): tools_cb_group = gr.CheckboxGroup(label="Tools:", choices=TOOLS_LIST, value=TOOLS_DEFAULT_LIST) tools_cb_group.change(update_selected_tools, inputs=[tools_cb_group, tools_list_state, llm_state], outputs=[tools_list_state, llm_state, chain_state, express_chain_state]) trace_chain_cb = gr.Checkbox( label="Show reasoning chain in chat bubble", value=False) trace_chain_cb.change(update_foo, inputs=[trace_chain_cb, trace_chain_state], outputs=[trace_chain_state]) # speak_text_cb = gr.Checkbox(label="Speak text from agent", value=False) # speak_text_cb.change(update_foo, inputs=[speak_text_cb, speak_text_state], # outputs=[speak_text_state]) talking_head_cb = gr.Checkbox(label="Show talking head", value=True) talking_head_cb.change(update_talking_head, inputs=[talking_head_cb, talking_head_state], outputs=[talking_head_state, video_html]) monologue_cb = gr.Checkbox(label="Babel fish mode (translate/restate what you enter, no conversational agent)", value=False) monologue_cb.change(update_foo, inputs=[monologue_cb, monologue_state], outputs=[monologue_state]) with gr.Tab("Whisper STT"): whisper_lang_radio = gr.Radio(label="Whisper speech-to-text language:", choices=[ WHISPER_DETECT_LANG, "Arabic", "Arabic (Gulf)", "Catalan", "Chinese (Cantonese)", "Chinese (Mandarin)", "Danish", "Dutch", "English (Australian)", "English (British)", "English (Indian)", "English (New Zealand)", "English (South African)", "English (US)", "English (Welsh)", "Finnish", "French", "French (Canadian)", "German", "German (Austrian)", "Georgian", "Hindi", "Icelandic", "Indonesian", "Italian", "Japanese", "Korean", "Norwegian", "Polish", "Portuguese (Brazilian)", "Portuguese (European)", "Romanian", "Russian", "Spanish (European)", "Spanish (Mexican)", "Spanish (US)", "Swedish", "Turkish", "Ukrainian", "Welsh"], value=WHISPER_DETECT_LANG) whisper_lang_radio.change(update_foo, inputs=[whisper_lang_radio, whisper_lang_state], outputs=[whisper_lang_state]) with gr.Tab("Translate to"): lang_level_radio = gr.Radio(label="Language level:", choices=[ LANG_LEVEL_DEFAULT, "1st grade", "2nd grade", "3rd grade", "4th grade", "5th grade", "6th grade", "7th grade", "8th grade", "9th grade", "10th grade", "11th grade", "12th grade", "University"], value=LANG_LEVEL_DEFAULT) lang_level_radio.change(update_foo, inputs=[lang_level_radio, lang_level_state], outputs=[lang_level_state]) translate_to_radio = gr.Radio(label="Language:", choices=[ TRANSLATE_TO_DEFAULT, "Arabic", "Arabic (Gulf)", "Catalan", "Chinese (Cantonese)", "Chinese (Mandarin)", "Danish", "Dutch", "English (Australian)", "English (British)", "English (Indian)", "English (New Zealand)", "English (South African)", "English (US)", "English (Welsh)", "Finnish", "French", "French (Canadian)", "German", "German (Austrian)", "Georgian", "Hindi", "Icelandic", "Indonesian", "Italian", "Japanese", "Korean", "Norwegian", "Polish", "Portuguese (Brazilian)", "Portuguese (European)", "Romanian", "Russian", "Spanish (European)", "Spanish (Mexican)", "Spanish (US)", "Swedish", "Turkish", "Ukrainian", "Welsh", "emojis", "Gen Z slang", "how the stereotypical Karen would say it", "Klingon", "Pirate", "Strange Planet expospeak technical talk", "Yoda"], value=TRANSLATE_TO_DEFAULT) translate_to_radio.change(update_foo, inputs=[translate_to_radio, translate_to_state], outputs=[translate_to_state]) with gr.Tab("Formality"): formality_radio = gr.Radio(label="Formality:", choices=[FORMALITY_DEFAULT, "Casual", "Polite", "Honorific"], value=FORMALITY_DEFAULT) formality_radio.change(update_foo, inputs=[formality_radio, formality_state], outputs=[formality_state]) with gr.Tab("Lit style"): literary_style_radio = gr.Radio(label="Literary style:", choices=[ LITERARY_STYLE_DEFAULT, "Prose", "Summary", "Outline", "Bullets", "Poetry", "Haiku", "Limerick", "Joke", "Knock-knock"], value=LITERARY_STYLE_DEFAULT) literary_style_radio.change(update_foo, inputs=[literary_style_radio, literary_style_state], outputs=[literary_style_state]) with gr.Tab("Emotions"): anticipation_level_radio = gr.Radio(label="Anticipation level:", choices=[ EMOTION_DEFAULT, "Interest", "Anticipation", "Vigilance"], value=EMOTION_DEFAULT) anticipation_level_radio.change(update_foo, inputs=[anticipation_level_radio, anticipation_level_state], outputs=[anticipation_level_state]) joy_level_radio = gr.Radio(label="Joy level:", choices=[EMOTION_DEFAULT, "Serenity", "Joy", "Ecstasy"], value=EMOTION_DEFAULT) joy_level_radio.change(update_foo, inputs=[joy_level_radio, joy_level_state], outputs=[joy_level_state]) trust_level_radio = gr.Radio(label="Trust level:", choices=[ EMOTION_DEFAULT, "Acceptance", "Trust", "Admiration"], value=EMOTION_DEFAULT) trust_level_radio.change(update_foo, inputs=[trust_level_radio, trust_level_state], outputs=[trust_level_state]) fear_level_radio = gr.Radio(label="Fear level:", choices=[EMOTION_DEFAULT, "Apprehension", "Fear", "Terror"], value=EMOTION_DEFAULT) fear_level_radio.change(update_foo, inputs=[fear_level_radio, fear_level_state], outputs=[fear_level_state]) surprise_level_radio = gr.Radio(label="Surprise level:", choices=[ EMOTION_DEFAULT, "Distraction", "Surprise", "Amazement"], value=EMOTION_DEFAULT) surprise_level_radio.change(update_foo, inputs=[surprise_level_radio, surprise_level_state], outputs=[surprise_level_state]) sadness_level_radio = gr.Radio(label="Sadness level:", choices=[ EMOTION_DEFAULT, "Pensiveness", "Sadness", "Grief"], value=EMOTION_DEFAULT) sadness_level_radio.change(update_foo, inputs=[sadness_level_radio, sadness_level_state], outputs=[sadness_level_state]) disgust_level_radio = gr.Radio(label="Disgust level:", choices=[EMOTION_DEFAULT, "Boredom", "Disgust", "Loathing"], value=EMOTION_DEFAULT) disgust_level_radio.change(update_foo, inputs=[disgust_level_radio, disgust_level_state], outputs=[disgust_level_state]) anger_level_radio = gr.Radio(label="Anger level:", choices=[EMOTION_DEFAULT, "Annoyance", "Anger", "Rage"], value=EMOTION_DEFAULT) anger_level_radio.change(update_foo, inputs=[anger_level_radio, anger_level_state], outputs=[anger_level_state]) with gr.Tab("Max words"): num_words_slider = gr.Slider(label="Max number of words to generate (0 for don't care)", value=NUM_WORDS_DEFAULT, minimum=0, maximum=MAX_WORDS, step=10) num_words_slider.change(update_foo, inputs=[num_words_slider, num_words_state], outputs=[num_words_state]) gr.HTML(AUTHORS) # gr.HTML(""" #
# # # # # # #
# """) gr.HTML("""
Duplicate Space Powered by LangChain 🦜️🔗
""") message.submit(chat, inputs=[openai_api_key_textbox, message, history_state, chain_state, trace_chain_state, speak_text_state, talking_head_state, monologue_state, express_chain_state, num_words_state, formality_state, anticipation_level_state, joy_level_state, trust_level_state, fear_level_state, surprise_level_state, sadness_level_state, disgust_level_state, anger_level_state, lang_level_state, translate_to_state, literary_style_state], outputs=[chatbot, history_state, video_html, my_file, audio_html, tmp_aud_file, message]) # outputs=[chatbot, history_state, audio_html, tmp_aud_file, message]) submit.click(chat, inputs=[openai_api_key_textbox, message, history_state, chain_state, trace_chain_state, speak_text_state, talking_head_state, monologue_state, express_chain_state, num_words_state, formality_state, anticipation_level_state, joy_level_state, trust_level_state, fear_level_state, surprise_level_state, sadness_level_state, disgust_level_state, anger_level_state, lang_level_state, translate_to_state, literary_style_state], outputs=[chatbot, history_state, video_html, my_file, audio_html, tmp_aud_file, message]) # outputs=[chatbot, history_state, audio_html, tmp_aud_file, message]) openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox], outputs=[chain_state, express_chain_state, llm_state]) block.launch(debug=True)