Spaces:
Runtime error
Runtime error
File size: 5,377 Bytes
9b36524 5a622c2 9b36524 5a622c2 9b36524 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
"""
Audio processing tools to convert between spectrogram images and waveforms.
"""
import io
import typing as T
import numpy as np
from PIL import Image
import pydub
from scipy.io import wavfile
import torch
import torchaudio
def wav_bytes_from_spectrogram_image(image: Image.Image) -> T.Tuple[io.BytesIO, float]:
"""
Reconstruct a WAV audio clip from a spectrogram image. Also returns the duration in seconds.
"""
max_volume = 50
power_for_image = 0.25
Sxx = spectrogram_from_image(image, max_volume=max_volume, power_for_image=power_for_image)
sample_rate = 44100 # [Hz]
clip_duration_ms = 5000 # [ms]
bins_per_image = 512
n_mels = 512
# FFT parameters
window_duration_ms = 100 # [ms]
padded_duration_ms = 400 # [ms]
step_size_ms = 10 # [ms]
# Derived parameters
num_samples = int(image.width / float(bins_per_image) * clip_duration_ms) * sample_rate
n_fft = int(padded_duration_ms / 1000.0 * sample_rate)
hop_length = int(step_size_ms / 1000.0 * sample_rate)
win_length = int(window_duration_ms / 1000.0 * sample_rate)
samples = waveform_from_spectrogram(
Sxx=Sxx,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
num_samples=num_samples,
sample_rate=sample_rate,
mel_scale=True,
n_mels=n_mels,
max_mel_iters=200,
num_griffin_lim_iters=32,
)
wav_bytes = io.BytesIO()
wavfile.write(wav_bytes, sample_rate, samples.astype(np.int16))
wav_bytes.seek(0)
duration_s = float(len(samples)) / sample_rate
return wav_bytes, duration_s
def spectrogram_from_image(
image: Image.Image, max_volume: float = 50, power_for_image: float = 0.25
) -> np.ndarray:
"""
Compute a spectrogram magnitude array from a spectrogram image.
TODO(hayk): Add image_from_spectrogram and call this out as the reverse.
"""
# Convert to a numpy array of floats
data = np.array(image).astype(np.float32)
# Flip Y take a single channel
data = data[::-1, :, 0]
# Invert
data = 255 - data
# Rescale to max volume
data = data * max_volume / 255
# Reverse the power curve
data = np.power(data, 1 / power_for_image)
return data
def spectrogram_from_waveform(
waveform: np.ndarray,
sample_rate: int,
n_fft: int,
hop_length: int,
win_length: int,
mel_scale: bool = True,
n_mels: int = 512,
) -> np.ndarray:
"""
Compute a spectrogram from a waveform.
"""
spectrogram_func = torchaudio.transforms.Spectrogram(
n_fft=n_fft,
power=None,
hop_length=hop_length,
win_length=win_length,
)
waveform_tensor = torch.from_numpy(waveform.astype(np.float32)).reshape(1, -1)
Sxx_complex = spectrogram_func(waveform_tensor).numpy()[0]
Sxx_mag = np.abs(Sxx_complex)
if mel_scale:
mel_scaler = torchaudio.transforms.MelScale(
n_mels=n_mels,
sample_rate=sample_rate,
f_min=0,
f_max=10000,
n_stft=n_fft // 2 + 1,
norm=None,
mel_scale="htk",
)
Sxx_mag = mel_scaler(torch.from_numpy(Sxx_mag)).numpy()
return Sxx_mag
def waveform_from_spectrogram(
Sxx: np.ndarray,
n_fft: int,
hop_length: int,
win_length: int,
num_samples: int,
sample_rate: int,
mel_scale: bool = True,
n_mels: int = 512,
max_mel_iters: int = 200,
num_griffin_lim_iters: int = 32,
device: str = "cuda:0",
) -> np.ndarray:
"""
Reconstruct a waveform from a spectrogram.
This is an approximate inverse of spectrogram_from_waveform, using the Griffin-Lim algorithm
to approximate the phase.
"""
Sxx_torch = torch.from_numpy(Sxx).to(device)
# TODO(hayk): Make this a class that caches the two things
if mel_scale:
mel_inv_scaler = torchaudio.transforms.InverseMelScale(
n_mels=n_mels,
sample_rate=sample_rate,
f_min=0,
f_max=10000,
n_stft=n_fft // 2 + 1,
norm=None,
mel_scale="htk",
max_iter=max_mel_iters,
).to(device)
Sxx_torch = mel_inv_scaler(Sxx_torch)
griffin_lim = torchaudio.transforms.GriffinLim(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
power=1.0,
n_iter=num_griffin_lim_iters,
).to(device)
waveform = griffin_lim(Sxx_torch).cpu().numpy()
return waveform
def mp3_bytes_from_wav_bytes(wav_bytes: io.BytesIO) -> io.BytesIO:
mp3_bytes = io.BytesIO()
sound = pydub.AudioSegment.from_wav(wav_bytes)
sound.export(mp3_bytes, format="mp3")
mp3_bytes.seek(0)
return mp3_bytes
def image_from_spectrogram(spectrogram: np.ndarray, max_volume: float = 50, power_for_image: float = 0.25) -> Image.Image:
"""
Compute a spectrogram image from a spectrogram magnitude array.
"""
# Apply the power curve
data = np.power(spectrogram, power_for_image)
# Rescale to 0-255
data = data * 255 / max_volume
# Invert
data = 255 - data
# Convert to a PIL image
image = Image.fromarray(data.astype(np.uint8))
# Flip Y
image = image.transpose(Image.FLIP_TOP_BOTTOM)
# Convert to RGB
image = image.convert("RGB")
return image |