import gradio as gr import matplotlib.pyplot as plt import numpy as np import matplotlib.pyplot as plt from scipy.io.wavfile import write audios = [ ["Book Example", "speaker"], ["Swoosh", "swoosh"], ["Knocking", "knocking"], ["Forest", "forest"], ["Evil Laugh", "evil-laugh"], ["Morning", "morning"], ["Cinematic", "cinematic"], ] with gr.Blocks() as demo: with gr.Tab("Waveforms"): gr.Markdown("""## Waveforms In this section, we'll look into the waveforms of multiple audios. """) for title, path in audios: with gr.Row(): with gr.Column(scale=1): gr.Markdown(f"### {title}") with gr.Column(scale=5): waveform = gr.Image(value=f"{path}/waveform.png") with gr.Column(scale=5): video = gr.Video(value=f"{path}/waveform_video.mp4") with gr.Tab("Understanding Frequencies"): gr.Markdown("""## Understanding Frequencies """) freq = gr.Slider(0, 300, step=20, value=40, label="Frequency") freq2 = gr.Slider(0, 30, step=5, value=0, label="Second Frequency") amplitude = gr.Slider(0.05, 1, step=0.05, value=1, label="Amplitude") audio = gr.Audio() with gr.Row(): plots = gr.Plot(label="Results") with gr.Row(): button = gr.Button(value="Create") # https://github.com/gradio-app/gradio/issues/5469 @gr.on(inputs=[freq, freq2, amplitude], outputs=[audio, plots]) def plot_sine(freq, freq2, a): sr = 44100 # samples per second ts = 1.0/sr # sampling interval t = np.arange(0, 1, ts) # time vector data = a * np.sin(2 * np.pi * freq * t) + a * np.sin(2 * np.pi * freq2 * t) # Normalize to [-1, 1] data = data / np.max(np.abs(data)) # Convert to 16-bit integer PCM data = (data * 32767).astype(np.int16) audio_data = (sr, data) fig, axes = plt.subplots(nrows=2, ncols=1, sharex=False) ax_waveform = axes[0] ax_spectrum = axes[1] ax_waveform.plot(t, data) ax_waveform.set_title(f'Sine wave with frequency {freq} and amplitude {a}') ax_waveform.set_xlabel('Time )s)') ax_waveform.set_ylabel('Amplitude') ax_waveform.set_title("Time domain of the signal") X = np.fft.fft(data) N = len(X) n = np.arange(N) T = N/sr freq = n/T ax_spectrum.set_xlim((0,300)) ax_spectrum.stem(freq, np.abs(X), 'r', \ markerfmt=" ", basefmt="-b") ax_spectrum.set_xlabel("Frequency (Hz)") ax_spectrum.set_title("Frequency domain of the signal") fig.tight_layout() fig.savefig('foo.png') return audio_data, fig button.click(plot_sine, inputs=[freq, freq2, amplitude], outputs=[audio, plots]) with gr.Tab("Spectrograms and Mel Spectrograms"): gr.Markdown("""## Waveforms In this section, we'll look into the waveforms of multiple audios. """) for title, path in audios: with gr.Row(): with gr.Column(scale=1): gr.Markdown(f"### {title}") with gr.Column(scale=10): gr.Image(value=f"{path}/waveform.png") with gr.Column(scale=10): gr.Image(value=f"{path}/fft.png") with gr.Column(scale=10): video = gr.Video(value=f"{path}/waveform_video.mp4") with gr.Row(): with gr.Column(scale=5): gr.Image(value=f"{path}/spectrogram.png") with gr.Column(scale=5): gr.Image(value=f"{path}/mel_spectrogram.png") if __name__ == '__main__': demo.launch(debug=True)