# Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import argparse import json import os import re import subprocess import tarfile import time import warnings from dataclasses import dataclass, field from typing import List, Optional warnings.filterwarnings("ignore") # ignore warning import pyrallis import torch from torchvision.utils import save_image from tqdm import tqdm from diffusion import DPMS, FlowEuler, SASolverSampler from diffusion.data.datasets.utils import ASPECT_RATIO_512_TEST, ASPECT_RATIO_1024_TEST, ASPECT_RATIO_2048_TEST from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode from diffusion.model.utils import prepare_prompt_ar from diffusion.utils.config import SanaConfig from diffusion.utils.logger import get_root_logger # from diffusion.utils.misc import read_config from tools.download import find_model def set_env(seed=0, latent_size=256): torch.manual_seed(seed) torch.set_grad_enabled(False) for _ in range(30): torch.randn(1, 4, latent_size, latent_size) def get_dict_chunks(data, bs): keys = [] for k in data: keys.append(k) if len(keys) == bs: yield keys keys = [] if keys: yield keys def create_tar(data_path): tar_path = f"{data_path}.tar" with tarfile.open(tar_path, "w") as tar: tar.add(data_path, arcname=os.path.basename(data_path)) print(f"Created tar file: {tar_path}") return tar_path def delete_directory(exp_name): if os.path.exists(exp_name): subprocess.run(["rm", "-r", exp_name], check=True) print(f"Deleted directory: {exp_name}") @torch.inference_mode() def visualize(items, bs, sample_steps, cfg_scale, pag_scale=1.0): if isinstance(items, dict): get_chunks = get_dict_chunks else: from diffusion.data.datasets.utils import get_chunks generator = torch.Generator(device=device).manual_seed(args.seed) tqdm_desc = f"{save_root.split('/')[-1]} Using GPU: {args.gpu_id}: {args.start_index}-{args.end_index}" assert bs == 1 for chunk in tqdm(list(get_chunks(items, bs)), desc=tqdm_desc, unit="batch", position=args.gpu_id, leave=True): # data prepare prompts, hw, ar = ( [], torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(bs, 1), torch.tensor([[1.0]], device=device).repeat(bs, 1), ) prompt = data_dict[chunk[0]]["prompt"] prompts = [ prepare_prompt_ar(prompt, base_ratios, device=device, show=False)[0].strip() ] * args.sample_per_prompt latent_size_h, latent_size_w = latent_size, latent_size # check exists save_file_name = f"{chunk[0]}_0.jpg" # 004971-0071_7.png save_path = os.path.join(save_root, save_file_name) if os.path.exists(save_path): # make sure the noise is totally same torch.randn( len(prompts), config.vae.vae_latent_dim, latent_size, latent_size, device=device, generator=generator ) continue # prepare text feature caption_token = tokenizer( prompts, max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt" ).to(device) caption_embs = text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None] emb_masks, null_y = caption_token.attention_mask, null_caption_embs.repeat(len(prompts), 1, 1)[:, None] # start sampling with torch.no_grad(): n = len(prompts) z = torch.randn( n, config.vae.vae_latent_dim, latent_size, latent_size, device=device, generator=generator, ) model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks) if args.sampling_algo == "dpm-solver": dpm_solver = DPMS( model.forward_with_dpmsolver, condition=caption_embs, uncondition=null_y, cfg_scale=cfg_scale, model_kwargs=model_kwargs, ) samples = dpm_solver.sample( z, steps=sample_steps, order=2, skip_type="time_uniform", method="multistep", ) elif args.sampling_algo == "sa-solver": sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device) samples = sa_solver.sample( S=25, batch_size=n, shape=(config.vae.vae_latent_dim, latent_size_h, latent_size_w), eta=1, conditioning=caption_embs, unconditional_conditioning=null_y, unconditional_guidance_scale=cfg_scale, model_kwargs=model_kwargs, )[0] elif args.sampling_algo == "flow_euler": flow_solver = FlowEuler( model, condition=caption_embs, uncondition=null_y, cfg_scale=cfg_scale, model_kwargs=model_kwargs ) samples = flow_solver.sample( z, steps=sample_steps, ) elif args.sampling_algo == "flow_dpm-solver": dpm_solver = DPMS( model.forward_with_dpmsolver, condition=caption_embs, uncondition=null_y, guidance_type=guidance_type, cfg_scale=cfg_scale, pag_scale=pag_scale, pag_applied_layers=pag_applied_layers, model_type="flow", model_kwargs=model_kwargs, schedule="FLOW", interval_guidance=args.interval_guidance, ) samples = dpm_solver.sample( z, steps=sample_steps, order=2, skip_type="time_uniform_flow", method="multistep", flow_shift=flow_shift, ) else: raise ValueError(f"{args.sampling_algo} is not defined") samples = samples.to(weight_dtype) samples = vae_decode(config.vae.vae_type, vae, samples) torch.cuda.empty_cache() os.umask(0o000) for i in range(bs): for j, sample in enumerate(samples): save_file_name = f"{chunk[i]}_{j}.jpg" save_path = os.path.join(save_root, save_file_name) # logger.info(f"Saving path: {save_path}") save_image(sample, save_path, nrow=1, normalize=True, value_range=(-1, 1)) def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, help="config") return parser.parse_known_args()[0] @dataclass class SanaInference(SanaConfig): config: str = "" model_path: Optional[str] = field(default=None, metadata={"help": "Path to the model file (optional)"}) txt_file: str = "asset/samples.txt" json_file: Optional[str] = None sample_nums: int = 100_000 bs: int = 1 sample_per_prompt: int = 10 cfg_scale: float = 4.5 pag_scale: float = 1.0 sampling_algo: str = field( default="flow_dpm-solver", metadata={"choices": ["dpm-solver", "sa-solver", "flow_euler", "flow_dpm-solver"]} ) seed: int = 0 dataset: str = "custom" step: int = -1 add_label: str = "" tar_and_del: bool = field(default=False, metadata={"help": "if tar and del the saved dir"}) exist_time_prefix: str = "" gpu_id: int = 0 custom_image_size: Optional[int] = None start_index: int = 0 end_index: int = 30_000 interval_guidance: List[float] = field( default_factory=lambda: [0, 1], metadata={"help": "A list value, like [0, 1.] for use cfg"} ) ablation_selections: Optional[List[float]] = field( default=None, metadata={"help": "A list value, like [0, 1.] for ablation"} ) ablation_key: Optional[str] = field(default=None, metadata={"choices": ["step", "cfg_scale", "pag_scale"]}) if_save_dirname: bool = field( default=False, metadata={"help": "if save img save dir name at wor_dir/metrics/tmp_time.time().txt for metric testing"}, ) if __name__ == "__main__": args = get_args() config = args = pyrallis.parse(config_class=SanaInference, config_path=args.config) args.image_size = config.model.image_size if args.custom_image_size: args.image_size = args.custom_image_size print(f"custom_image_size: {args.image_size}") set_env(args.seed, args.image_size // config.vae.vae_downsample_rate) device = "cuda" if torch.cuda.is_available() else "cpu" logger = get_root_logger() # only support fixed latent size currently latent_size = args.image_size // config.vae.vae_downsample_rate max_sequence_length = config.text_encoder.model_max_length pe_interpolation = config.model.pe_interpolation micro_condition = config.model.micro_condition flow_shift = config.scheduler.flow_shift pag_applied_layers = config.model.pag_applied_layers guidance_type = "classifier-free_PAG" assert ( isinstance(args.interval_guidance, list) and len(args.interval_guidance) == 2 and args.interval_guidance[0] <= args.interval_guidance[1] ) args.interval_guidance = [max(0, args.interval_guidance[0]), min(1, args.interval_guidance[1])] sample_steps_dict = {"dpm-solver": 20, "sa-solver": 25, "flow_dpm-solver": 20, "flow_euler": 28} sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo] if config.model.mixed_precision == "fp16": weight_dtype = torch.float16 elif config.model.mixed_precision == "bf16": weight_dtype = torch.bfloat16 elif config.model.mixed_precision == "fp32": weight_dtype = torch.float32 else: raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined") logger.info(f"Inference with {weight_dtype}, default guidance_type: {guidance_type}, flow_shift: {flow_shift}") vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, device).to(weight_dtype) tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name, device=device) null_caption_token = tokenizer( "", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt" ).to(device) null_caption_embs = text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0] # model setting pred_sigma = getattr(config.scheduler, "pred_sigma", True) learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma model_kwargs = { "input_size": latent_size, "pe_interpolation": config.model.pe_interpolation, "config": config, "model_max_length": config.text_encoder.model_max_length, "qk_norm": config.model.qk_norm, "micro_condition": config.model.micro_condition, "caption_channels": text_encoder.config.hidden_size, "y_norm": config.text_encoder.y_norm, "attn_type": config.model.attn_type, "ffn_type": config.model.ffn_type, "mlp_ratio": config.model.mlp_ratio, "mlp_acts": list(config.model.mlp_acts), "in_channels": config.vae.vae_latent_dim, "y_norm_scale_factor": config.text_encoder.y_norm_scale_factor, "use_pe": config.model.use_pe, "linear_head_dim": config.model.linear_head_dim, "pred_sigma": pred_sigma, "learn_sigma": learn_sigma, "use_fp32_attention": getattr(config.model, "fp32_attention", False), } model = build_model(config.model.model, **model_kwargs).to(device) logger.info( f"{model.__class__.__name__}:{config.model.model}, Model Parameters: {sum(p.numel() for p in model.parameters()):,}" ) args.model_path = args.model_path or args.position_model_path logger.info("Generating sample from ckpt: %s" % args.model_path) state_dict = find_model(args.model_path) if "pos_embed" in state_dict["state_dict"]: del state_dict["state_dict"]["pos_embed"] missing, unexpected = model.load_state_dict(state_dict["state_dict"], strict=False) logger.warning(f"Missing keys: {missing}") logger.warning(f"Unexpected keys: {unexpected}") model.eval().to(weight_dtype) base_ratios = eval(f"ASPECT_RATIO_{args.image_size}_TEST") args.sampling_algo = ( args.sampling_algo if ("flow" not in args.model_path or args.sampling_algo == "flow_dpm-solver") else "flow_euler" ) work_dir = ( f"/{os.path.join(*args.model_path.split('/')[:-2])}" if args.model_path.startswith("/") else os.path.join(*args.model_path.split("/")[:-2]) ) dict_prompt = args.json_file is not None if dict_prompt: data_dict = json.load(open(args.json_file)) items = list(data_dict.keys()) else: with open(args.txt_file) as f: items = [item.strip() for item in f.readlines()] logger.info(f"Eval first {min(args.sample_nums, len(items))}/{len(items)} samples") items = items[: max(0, args.sample_nums)] items = items[max(0, args.start_index) : min(len(items), args.end_index)] match = re.search(r".*epoch_(\d+).*step_(\d+).*", args.model_path) epoch_name, step_name = match.groups() if match else ("unknown", "unknown") img_save_dir = os.path.join(str(work_dir), "vis") os.umask(0o000) os.makedirs(img_save_dir, exist_ok=True) logger.info(f"Sampler {args.sampling_algo}") def create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type): save_root = os.path.join( img_save_dir, # f"{datetime.now().date() if args.exist_time_prefix == '' else args.exist_time_prefix}_" f"{dataset}_epoch{epoch_name}_step{step_name}_scale{args.cfg_scale}" f"_step{sample_steps}_size{args.image_size}_bs{args.bs}_samp{args.sampling_algo}" f"_seed{args.seed}_{str(weight_dtype).split('.')[-1]}", ) if args.pag_scale != 1.0: save_root = save_root.replace(f"scale{args.cfg_scale}", f"scale{args.cfg_scale}_pagscale{args.pag_scale}") if flow_shift != 1.0: save_root += f"_flowshift{flow_shift}" if guidance_type != "classifier-free": save_root += f"_{guidance_type}" if args.interval_guidance[0] != 0 and args.interval_guidance[1] != 1: save_root += f"_intervalguidance{args.interval_guidance[0]}{args.interval_guidance[1]}" save_root += f"_imgnums{args.sample_nums}" + args.add_label return save_root def guidance_type_select(default_guidance_type, pag_scale, attn_type): guidance_type = default_guidance_type if not (pag_scale > 1.0 and attn_type == "linear"): logger.info("Setting back to classifier-free") guidance_type = "classifier-free" return guidance_type dataset = "MJHQ-30K" if args.json_file and "MJHQ-30K" in args.json_file else args.dataset if args.ablation_selections and args.ablation_key: for ablation_factor in args.ablation_selections: setattr(args, args.ablation_key, eval(ablation_factor)) print(f"Setting {args.ablation_key}={eval(ablation_factor)}") sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo] guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type) save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type) os.makedirs(save_root, exist_ok=True) if args.if_save_dirname and args.gpu_id == 0: # save at work_dir/metrics/tmp_xxx.txt for metrics testing with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f: print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt") f.write(os.path.basename(save_root)) logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}") visualize(items, args.bs, sample_steps, args.cfg_scale, args.pag_scale) else: guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type) logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}") save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type) os.makedirs(save_root, exist_ok=True) if args.if_save_dirname and args.gpu_id == 0: os.makedirs(f"{work_dir}/metrics", exist_ok=True) # save at work_dir/metrics/tmp_xxx.txt for metrics testing with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f: print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt") f.write(os.path.basename(save_root)) visualize(items, args.bs, sample_steps, args.cfg_scale, args.pag_scale) if args.tar_and_del: create_tar(save_root) delete_directory(save_root)