|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SAMPLING ONLY.""" |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusion.model.sa_solver import NoiseScheduleVP, SASolver, model_wrapper |
|
|
|
from .model import gaussian_diffusion as gd |
|
|
|
|
|
class SASolverSampler: |
|
def __init__( |
|
self, |
|
model, |
|
noise_schedule="linear", |
|
diffusion_steps=1000, |
|
device="cpu", |
|
): |
|
super().__init__() |
|
self.model = model |
|
self.device = device |
|
to_torch = lambda x: x.clone().detach().to(torch.float32).to(device) |
|
betas = torch.tensor(gd.get_named_beta_schedule(noise_schedule, diffusion_steps)) |
|
alphas = 1.0 - betas |
|
self.register_buffer("alphas_cumprod", to_torch(np.cumprod(alphas, axis=0))) |
|
|
|
def register_buffer(self, name, attr): |
|
if type(attr) == torch.Tensor: |
|
if attr.device != torch.device("cuda"): |
|
attr = attr.to(torch.device("cuda")) |
|
setattr(self, name, attr) |
|
|
|
@torch.no_grad() |
|
def sample( |
|
self, |
|
S, |
|
batch_size, |
|
shape, |
|
conditioning=None, |
|
callback=None, |
|
normals_sequence=None, |
|
img_callback=None, |
|
quantize_x0=False, |
|
eta=0.0, |
|
mask=None, |
|
x0=None, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
verbose=True, |
|
x_T=None, |
|
log_every_t=100, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
model_kwargs={}, |
|
|
|
**kwargs, |
|
): |
|
if conditioning is not None: |
|
if isinstance(conditioning, dict): |
|
cbs = conditioning[list(conditioning.keys())[0]].shape[0] |
|
if cbs != batch_size: |
|
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") |
|
else: |
|
if conditioning.shape[0] != batch_size: |
|
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") |
|
|
|
|
|
C, H, W = shape |
|
size = (batch_size, C, H, W) |
|
|
|
device = self.device |
|
if x_T is None: |
|
img = torch.randn(size, device=device) |
|
else: |
|
img = x_T |
|
|
|
ns = NoiseScheduleVP("discrete", alphas_cumprod=self.alphas_cumprod) |
|
|
|
model_fn = model_wrapper( |
|
self.model, |
|
ns, |
|
model_type="noise", |
|
guidance_type="classifier-free", |
|
condition=conditioning, |
|
unconditional_condition=unconditional_conditioning, |
|
guidance_scale=unconditional_guidance_scale, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
sasolver = SASolver(model_fn, ns, algorithm_type="data_prediction") |
|
|
|
tau_t = lambda t: eta if 0.2 <= t <= 0.8 else 0 |
|
|
|
x = sasolver.sample( |
|
mode="few_steps", |
|
x=img, |
|
tau=tau_t, |
|
steps=S, |
|
skip_type="time", |
|
skip_order=1, |
|
predictor_order=2, |
|
corrector_order=2, |
|
pc_mode="PEC", |
|
return_intermediate=False, |
|
) |
|
|
|
return x.to(device), None |
|
|